
Automatic Skeleton Generation
for Data-Aware Service Choreographies

Huu Nghia Nguyen∗, Pascal Poizat∗∗ and Fatiha Zaı̈di∗

∗ LRI; Univ. Paris-Sud, CNRS, Orsay, France
∗∗ LIP6; Univ. Paris Ouest Nanterre La Défense, CNRS, La Défense, France

huu-nghia.nguyen@lri.fr, pascal.poizat@lip6.fr, fatiha.zaidi@lri.fr

Abstract—Service-oriented engineering is an emerging soft-
ware development paradigm for distributed collaborative ap-
plications. Services are developed independently and are com-
posed to achieve common requirements. Service choreographies
define such requirements from a global perspective, based on
interactions among a set of participants that are implemented
as services. In this paper, we support a reliable data-aware
service choreography development process through a dedicated
projection. It extracts, from a choreography, a behavioral skeleton
for each of its participants. The projection is valuable in a top-
down approach, where developers have only to complete the
skeletons with some business code in order to get a distributed
application that matches the choreography requirements. The
projection is also valuable in a bottom-up approach, where the
skeletons can act as controllers between reused services in order
to enforce the respect of the choreography. Our approach is
supported with a tool that can be downloaded or used online.

Keywords—Service Choreography, Value-Passing Processes,
Contract Compliance, Contract Projections, Symbolic Transition
Systems, Tool.

I. INTRODUCTION

Service-oriented engineering is an emerging paradigm for
the development of distributed applications. Such an application
is made up of several entities abstracted as services, each of
them being for example a Web application, a Web service, or
even a human. To reach a common objective, services have
to coordinate by interacting with each other. Choreographies
support such a collaborative vision of a distributed application.
A choreography is the specification of what the collaboration
participants, or roles, should achieve altogether. Due to its
global perspective, a choreography focuses on interactions
between two roles. A choreography is a constraint that each
service implementing a role has to follow.

There exist two different modeling approaches for chore-
ographies [1]: interconnected interface models and interaction
models. In interconnected interface models (e.g., BPMN
collaboration diagrams, BPEL4Chor, MSC, UML sequence
diagrams, Reo), the basic events are defined at the role level
(e.g., sending or receiving a message). Global level interactions
are then defined by roughly connecting these events. To the
contrary, in interaction models (e.g., WS-CDL, BPMN 2.0
choreography diagrams), the basic events are the interactions
between roles. This makes interaction models suitable not only
for a bottom-up development process – where one has services
to reuse and to compose – but also for a top-down development

process – where one starts with a global specification of the
distributed application to be.

Besides the global perspective, interactions may be seen
from the local perspective of each role. From this perspective,
only interactions that directly involve the role are captured.
Consequently, there exist two kinds of models, local models,
or role models, which specify the local behaviors of roles
(one for each), and global models, or choreography models,
that correspond to choreography specifications. Choreography
models are useful during the early phases of system analysis
and design thanks to its global perspective, while role models
are blueprints for the implementation of services realizing roles,
for the derivation of test cases for these services, and for the
adaptation of reused services to the choreography constraints.

Consequently bridging the gap between choreography
and role models is a cornerstone for top-down choreography
development processes. This relates to the projection of relevant
role models, or skeletons, from a choreography model as
shown in Figure 1. To ensure the correctness of this projection,
the conformance between the choreography model and the
composition of the generated role models should be verified.

A fundamental issue of choreography, called realizability, is
whether a choreography model can be correctly projected to role
models. Generally, not all choreographies are realizable. Let us
take the two unrealizable choreographies described in Figure 2.
The left hand side choreography describes, in the BPMN 2.0
choreography notation, a request interaction between roles
buyer and vendor followed by a ship interaction between
roles warehouse and shipper. This choreography is not
realizable since role warehouse has no possibility to know
when ship must be done. It is after request, but the

Sp
ec

ifi
ca

tio
n

Im
pl

em
en

ta
tio

n

Choreography

Role models
(skeletons)

Roles’ Composition

Service

projection

implement

realizability?

conformance?

composition

Fig. 1. Top-down approach of choreography development

a

requestrequestrequest

buyer

vendor

shipshipship
warehouse

shipper

b

requestrequestrequest

buyer

vendor

shipshipship
warehouse

shipper

Legend

requestrequestrequest
a

b

Sender
Operation

Receiver

Exclusive choice
Sequence flow

Start End

Fig. 2. Examples of unrealizable choreographies

warehouse never knows when request occurs. The right
hand side choreography requires that either request or ship
is done but there is no way to ensure that since different sender
roles, i.e., the buyer and the warehouse, are concerned.

The rest of the paper is organized as follows. We first
motivate our work by presenting in Section II the impact of
value-passing on choreography models and on realizability,
together with details on possible application domains. In
this section, we also give an overview of our work and its
contributions. We then introduce in Section III our formal model
for data-awareness interaction-based service choreographies. A
projection from choreography to local model of each role is
defined in Section IV. The projection correctness is ensured
in Section V by analyzing the choreography realizability. The
implementation of our framework and experiments are discussed
in Section VI. After presenting related work in Section VII,
we conclude and discuss perspectives of our work.

II. MOTIVATION AND OVERVIEW

In this section we motivate our work by firstly pointing
to the lack of data-aware support in interaction-based service
choreography. We then introduce some applicable domains
which can directly reuse the results of this paper. Finally, we
present our contribution and give an overview of our approach.

A. Issue: Choreography with Value-Passing

Most existing approaches do not adequately support the
value-passing, i.e., without explicitly considering the data
exchanged through interactions and using it for branching
decisions. They just abstract away from data. This may yield
over-approximation issues, e.g., false negatives in verification
process. Hence the presence of value-passing in choreography
model may change its realizability property. Let us take an
extension of the unrealizable choreographies in Figure 2 as
depicted in Figure 3, which becomes realizable thanks to the
value-passing. In this figure, the BPMN 2.0 notations are
extended to support data [2], hence an interaction is attached
with a variable. The left choreography describes that firstly
there is an interaction o1 from role a to role c with data
exchange called x. Then the interaction o2 from a to b should
be done if x > 0. Finally, the interaction o3 from c to d
should be done if x ≤ 0. It is straightforward to see that the
interaction o3 is never executed. Hence there is no need of
o3 in the choreography. The choreography becomes realizable
when only o1 and o2 are required to be implemented. The right
choreography is realizable as well, when the communication
is synchronous or on an asynchronous sending mode. After o1
has been done, all roles know x so they can decide to do (send
or receive) o2 or o3.

Legend
request
request
name

a

b

Sender

Operation

Variable

Receiver

a. unreachable

o1
o1

x

c

a

o2
o2

a

b

o3
o3

c

d

x > 0 x ≤ 0

b. conditional branching

o1
o1

x

b

d

o1
o1

x

d

a

o1
o1

x

a

c

o2
o2

a

b

o3
o3

c

d

x > 0

x ≤ 0

Fig. 3. Impact of data: unrealizability → realizability

It is critical to support value-passing in modeling and then
in analyzing service choreographies. Some approaches do this
by working on closed implementation-level systems, i.e., value-
passing is only with ground data. In such a case, this could
lead into serious efficiency problems, state space explosion,
when analyzing choreography. Some others avoid this problem
by analyzing choreography based on the syntax when checking
realizability. However, these approaches miss the cases of
unreachable and conditional branching as in Figure 3. Moreover,
the models used in these works are interaction-based but data
are expressed as the way of interconnection-based, i.e., the
variables are defined at each local role then their values are
synchronized thanks to interactions. This is not adequate for
an interaction-based approach. The interactions together with
variables should be the basic events. In the choreographies of
Figure 3, variable x is attached to the interaction o1, in which
one does not need to specify explicitly that the first condition
x > 0 must be done at a and the second one x ≤ 0 at c.

B. Application Domains

1) Generation of Source Code for Service Implementations:
In a top-down development process, once the behavioral
skeletons have been generated from the choreography with the
approach we propose in this paper, one has to implement the
business logic behind the protocols expressed in the skeletons.
In order to get full compatibility between the business logic
and the behavioral protocols, one may use results presented
in [3]–[5] to retrieve Java code from skeleton models. This is
made possible since the formal models we use for skeletons,
Symbolic Transition Graphs, are very close to the Symbolic
Transition Systems used in the above-mentioned approaches

2) Generation of Distributed Test Cases: Role models can
be used to generate test cases. Many approaches support the
production of tests from symbolic transition models. In [6], we
generate symbolic test cases according to different coverage
criteria or test purposes. A product is performed between the
test purpose and the symbolic model. A symbolic execution
tree for this product is generated and used to obtain symbolic
test cases, i.e., test cases with free variables and constraints on
their values. These test cases are then realized and executed
against the implementation with the use of a constraint solving
tool. Role models generated with the approach we propose
yield global conformance with the choreography. In such a
case, the interaction part is guaranteed, in other words testing
in isolation each service implementing a role can be sufficient
to warranty the correction of the choreography implementation.

3) Resolving Mismatch for Service Choreography: Using a
bottom-up development process, each peer of a distributed

collaborative application may be independently developed
and deployed across different organizations. It is therefore
unavoidable that mismatch may arise at both signature and
protocol levels, and need to be identified and solved. When two
or more peers are incompatible, an adaptor may be introduced
to solve mismatch [7]. The adaptor runs parallel with the peers
and guides their execution, e.g., avoiding deadlock of their
composition. In combination with adaptation, the approach we
propose in this paper can be used to resolve mismatch between
reused services and between these services’ composition and
the requirements expressed by the choreography. Skeletons
constitute local contracts that services have to fulfill to yield
an overall composition being correct wrt. the choreography.
Given each of these skeletons, and the corresponding service
one wants to reuse for it, we can generate an adaptor between
the skeleton and the service. This can be performed in a fully
automatic way for some mismatch. For the more powerful
adaptation approaches, i.e., for more complex mismatch, the
process can be aided [8].

C. Contributions and Overview of the Proposed Approach

The first contribution of the paper relies on the observation
of lack of value-passing support in modeling and analyzing
service choreographies. Based on this statement, we enrich
the interaction-based model by extending our previous formal
model [9] to deal with free and bound variables at global and
local models. We propose a symbolic framework in which, the
data variables are manipulated by using symbols rather than
their concrete values. This enables one to model and analyze
service choreography in presence of data without suffering
from state space explosion and without bounding data domains,

Based on the formal model, we define what is a realizable
choreography. In this paper, we do not only check whether the
choreography is realizable, but also we propose solutions to
render it realizable. For that purpose, we build a projection
function, dealing with data, which allows to retrieve local
models from a global one. The projection is dedicated to enable
the realizability of choreography, i.e., when the choreography
is unrealizable, some extra interactions can be automatically
introduced. Furthermore, the minimum extra interactions are
added in order to obtain minimal implementation and traffic.
The projection considers both synchronous and asynchronous
communication modes.

The last contribution of this work is the availability of
a tool1. That is a stand-alone software or a web application
that can be used directly in a web browser. We performed
experiments on a variety of examples.

The rationale of our approach starts with a Symbolic
Transition Graph for the choreography. We then check if it is
reachable relying on an SMT solving tool. Once unreachable
transitions are removed from the initial model, we produce the
role models by applying our projection function. Afterwards,
we check the realizability of the composed local models
with respect to the choreography. In case of a non realizable
choreography, we propose an approach that will compute the
needed interactions to add in order to obtain a realizable
choreography. Furthermore, to ensure that our projection is well
defined, we verify that the composed local models produced by

1 Our tool is freely available at http://schora.lri.fr

the projection conform to the global model. For that purpose,
we use a branching symbolic bismulation relation to establish
the conformance.

III. A DATA-AWARE FORMAL MODEL FOR
INTERACTION-BASED SERVICE CHOREOGRAPHIES

In this section, we introduce our formal model for service
choreography with value-passing. It is an extension of the
one presented in our previous work [9] which introduces
free interactions and bound sending events (see below). The
symbolic semantics of the model are also introduced. Let us
start with the formalization of the basic events.

A. Basic Events of Global and Local Models

In interaction-based model, the basic event in choreography
is an interaction. An interaction represents a conversation
between two roles. In this section, we will extend interactions
with data. We distinguish two kinds of interactions: free
interactions and bound interactions.

Let a, b, c, . . . ∈ R: be a finite set of roles, and
o, o1, . . . ∈ O: be a finite set of operations,

a free interaction represents a communication of value of
variable x realized through an operation o from role a to
b, which is denoted by o[a,b].x, while the bound one is denoted
by o[a,b].〈x〉.

The difference between free and bound interaction relies on
how their variables representing data exchange are interpreted.
In free interaction, the data exchange must be known before
the interaction may occur. While in bound interaction, the data
exchange is bounded when the interaction occurs. We remark
that x may be a complex structure variable. The variable x
may be omitted when the interaction does not carry data, e.g.,
ACK[a,b], or when it is never used.

At local view, we introduce a (bound) reception o[a,b]?〈x〉,
a free sending o[a,b]!x, and a bound sending o[a,b]!〈x〉. They
are used to represent reception or sending activities of each
participant in choreography. Table I list our basic events, in
which we define fv(α) and bv(α) as the set of free and
bound variables in α. In the Table I, τ event is considered
for local model. In the literature, τ events are usually used to
represent unobservable events, e.g., internal events. Since we
are interested in an abstract formal choreography model, i.e.,
implementation independent and in interaction-based model, the
basic events are interactions, the internal event can be ignored
at choreography level [10]. Although there are no internal
events in our approach, τ is used to represent an unobservable
interaction. Consequently, it does not exist at global model but
may appear on local models to express interactions of third
participants, e.g., these interactions do not concern the current
participant, this is why they are not observable.

B. Symbolic Transition Graphs

In this paper, we formally modeled service choreographies
with Symbolic Transition Graphs (STG) [11], which can be
used to specify either global view or local view with global or
local events. We select STG as model for service choreography
since it supports data, guard and free/bound variables [11]–[13].

http://schora.lri.fr

TABLE I. THE BASIC EVENTS

α Name Local/Global Free/Bound fv(α) bv(α)

o[a,b].x Free Interaction global model f {x} ∅
o[a,b].〈x〉 Bound Interaction b ∅ {x}
τ Silent Event

local model

f ∅ ∅
o[a,b]?〈x〉 (Bound) Reception b ∅ {x}
o[a,b]!x Free Sending f {x} ∅
o[a,b]!〈x〉 Bound Sending b ∅ {x}

Many formal approaches and notably conformance relation are
based on such a model [14]. Moreover, Symbolic Transition
systems, which is very close to STG, are widely used in
different areas, e.g., for testing purpose [6], [15], or for code
generation [3]–[5]. A STG is a transition system. Each transition
of STG is labelled by a guard φ and a basic event α. The guard
φ is a boolean equation which has to hold for the transition to
take place. A symbolic transition from state s to state s′ with
a guard φ, and an event α is denoted as s

[φ]α−−−→ s′. The guard
φ of a transition can be omitted if it is true, e.g., s α−→ s′.

Formally, a STG is a tuple (S, s0, T) where, S is a non
empty set of finite states, each state s having an associated
set of free variables fv(s) which are used by guards or events
in next transitions, s0 ∈ S is the initial state, and T is a set
of finite transitions. If s

[φ]α−−−→ s′ is a transition of T then
fv(φ) ∪ fv(α) ⊆ fv(s) and fv(s′) ⊆ fv(s) ∪ bv(α).

The symbolic semantics of STG are given with respect
to substitution of variables into fresh variables. Each state
s is associated with a substitution σ. Under late semantic,
for every transition s

[φ]α−−−→ s′, the free variable in φ and α
will be changed by the substitution of s. Moreover, if α is a
bound event, e.g., o[a,b].〈x〉, o[a,b]?〈x〉, or o[a,b]!〈x〉, then the
substitution of s′ is the one of s by updating a substitution
from x to a fresh variable, instead of a value.

C. Choreography Reachability

A STG is a specific directed graph where each transition is
guarded by a condition. A transition t is never fired when
its guard is always false for any value of variables, e.g.,
(x > 0)∧(x < 0). In such a case, the transition t is unreachable,
otherwise it is reachable. If a transitions t is unreachable
then the transitions, which are only visited through t, are
also unreachable. A STG is reachable if all its transitions are
reachable. It is straightforward to see that the reachable STG
obtained from a STG by removing all unreachable transitions
has the same behavior with the original one.

Particularly, given a STG (S, s0, T), we start the traversal
from the initial state s0. For each outgoing transition t, we
verify the conjunction of its guard and its precedent guards
accumulating from s0. If the conjunction is always false, then
the transition is removed. Furthermore, all transitions which
are only visited through t are also removed.

D. Service Choreography Example

In order to illustrate the problems related to the realizability
checking of service choreography, we consider an Online
Shopping Process (OSP) case study. We model the scenario
using an extended BPMN 2.0 choreography [2] as in Figure 4(a).
It describes the collaborations between four independent

request
request
name

buyer

vendor

response
response

info

vendor

buyer

abort
abort
busy

vendor

buyer

buy
buy

name

buyer

vendor

sell
sell

name

vendor

warehouse

response
response

avail

warehouse

vendor

sold
sold

vendor

buyer

ship
ship

name

warehouse

shipper

confirm
confirm
invoice

vendor

buyer

avail 6= OK

avail = OK

(a)

0

{}

1

{}

2

{}

3

{}

4

{}

5

{x1}

6

{x1}

7

{x1, x2}

8

{}

req[b,v]

rep[v,b]

req[b,v]

rep[v,b]

abo
rt
[v,
b]

buy[b,v].〈x1〉 sell[v,w].x1 rep[w,v].〈x2〉

[x2=OK] ship[w,s].x1

confirm[v,b].

[x
2 6=OK] sold [v,b]

(b)

Fig. 4. Online Shopping Process in (a) Extending BPMN 2.0 Choreography [2]
and in (b) Symbolic Transition Graph

participants: a buyer, a vendor, a warehouse, and a shipper. First,
the buyer asks the vendor for an interested product by indicating
the name of a requested product. The buyer responds with the
information of the product info. This is repeated until the
buyer decides to buy a product or it is aborted by the vendor.
After receiving the buy request, the vendor issues a sell
command to the warehouse. The warehouse replies with the
status of the product. If the product is available, the warehouse
transfers the product to the shipper, then a confirmation will
be issued from the vendor to the buyer. Otherwise, the product
is sold, the vendor will notify a sold response to the buyer.

The STG corresponding to this online shopping choreogra-
phy is presented in Figure 4(b). For simplicity, we denote b as
the buyer, v as the vendor, w as the warehouse, and s as the
shipper. The operation and variable names are also reduced.
Since the information brought by name of the first interaction,
info, busy, and invoice do not help any interactions, i.e.,
using by guard or free interaction, we remove them in the
STG. The name in the third interaction is kept in the STG
since it will be used by the sell and ship interactions. Let
us note that a specification specifies what rather than how
system should or should not be done. Hence in the running
example, Figure 4(a), we do not pay attention to how the buyer
selects the product itself, but after that we know the name
of the selected one. The interaction buy should be described
by a bound interaction, e.g., buy[b,v].〈x1〉. Contrarily, in the
interaction sell, the product name transferred from the vendor
to the warehouse is the one the vendor received from the buyer,
hence the interaction must be described by a free interaction,
e.g., sell[v,w].x1.

TABLE II. NATURAL PROJECTION

interaction α on role a on role b on role c 6∈ {a, b}

s
[φ] o[a,b].x−−−−−−−→ s′ s

[φ] o[a,b]!x−−−−−−−→ s′ s
o[a,b]?〈x〉−−−−−−−→ s′ s

τ−→ s′

s
[φ] o[a,b].〈x〉−−−−−−−−−→ s′ s

[φ] o[a,b]!〈x〉−−−−−−−−−→ s′ s
o[a,b]?〈x〉−−−−−−−→ s′ s

τ−→ s′

IV. GLOBAL-TO-LOCAL: BRIDGING THE GAP BETWEEN
DESIGN AND IMPLEMENTATION

A trivial implementation of a choreography is a single
service which plays all roles of the choreography. In such a case,
there is no more realizability issue. However, choreography
intends to specify, from a global view, a collaboration of a set
of roles. Each role in the choreography is a concrete entity
taking part in this collaboration. It should be implemented by
a distinguishable, independent service. Consequently, an imple-
mentation of a choreography should be a set of services where
each one implements one of the roles and their composition
represents the behaviors required by the choreography. This
implementation can be constructed based on a projection and
local conformance. The local conformance ensures that a service
respects its role. It was studied by our previous work [16]. This
section is then dedicated to define the projection.

Basically, projection is a procedure which takes as an input
a choreography model with n roles and outputs a set of n local
models, each one representing the required behaviors of a role
in the choreography. A set of such local models can be used as
a candidate for implementation. Intuitively, behaviors of a local
model are extracted from those of global model, in which a
participates, e.g., the free interaction o[a,b].x is projected onto
free sending o[a,b]!x of role a, and on reception o[a,b]?〈x〉 on
role b. The projection of each transition of STG is defined
as in Table II. For instance, the projection of choreography
STG in Figure 4(b) on its roles after removing some unused τ
transitions is depicted in Figure 5.

V. REALIZABILITY

Once local models are generated, the conformance checking
can be used to check if their execution conforms to the
interaction constraints specified in the choreography. It is done
by checking (global) conformance between the composition of
local models and the choreography. The projection is correct if
the generated local models exactly preserve the communication
requirements of the choreography model. The projection can
be ensured if it is only applied on realizable choreographies.
However, choreography may often not be realizable. It is not
very helpful if we simply apply natural projection for realizable
choreography and for the rest, we claim them as wrong. The
reason of choreography unrealizability is that the interactions
involve separate roles. Hence a role cannot compute itself
which interactions it must or must not do. The role does the
computation when it must perform an interaction after another
interaction, or when it has to choose which branch must be
followed. Furthermore, when a role uses a free variable, in
guard or in free interaction, these variables must be known
before by itself in order to validate the guard or to send value
of the variable. It is impossible to ensure the choreography
realizability without introducing additional interactions.

Going further than determining whether a choreography is
realizable, we intend to provide a dedicated projection which

0

{}

1
{}

2
{}

3

{}
4

{}

5
{}

7
{}

req[b,v]!

rep[v,b]?

req[b,v]!

rep[v,b]?

abort[v,b]?

buy[b,v]!
τ

confirm[v,b]?

sold[v,b]?

(a)

2
{}

6
{x1}

7
{x1, x2}

4

{}

τ

sell[v,w]?〈x1〉 rep[w,v]!〈x2〉

τ

τ [x2=OK] ship[w,s]!x1

(c)

1
{}

0

{}

2
{}

3

{}
4

{}

5
{x1}

6
{}

7
{x2}

request[b,v]?

rep[v,b]!

req[b,v]?

rep[v,b]!

abort[v,b]!

buy[b,v]?〈x1〉 sell[v,w]!x1 rep[w,v]?〈x2〉

confirm[v,b]!

[x2 6=OK] sold[v,b]!

(b)

2
{x2}

7
{x2}

4

{}

τ

τ

τ

τ ship[w,s]?〈x1〉

(d)

Fig. 5. The projection of STG in Fig. 4(b) on role: (a) buyer, (b) vendor, (c)
warehouse, and (d) shipper)

can be used also for unrealizable choreographies. In such a case,
the projection is able to propose additional interactions in order
to enable the realizability of a choreography. Our projection,
which generates local models from a choreography, is performed
in several steps. First, we remove all unreachable transitions of
the choreography. We then work on a reachable choreography.
We calculate a set of additional interactions needed to be
added. If this set is not empty, i.e., the choreography is
not realizable, then we minimize this set such that there
are minimal interactions which are added. After adding the
additional interactions to the choreography, we perform the
natural projection of the choreography on each role. Finally,
we reduce some consecutive transitions which contains τ event.
Let us go in detail by analyzing the cases where we need to
introduce additional interactions. In the sequel, we examine
only reachable STGs, e.g., if a STG is not reachable, we must
firstly remove all unreachable transitions.

A. Event connectedness

At global level, an interaction, e.g., α, which is a single
event, becomes two separate events: a sending, α!, and a recep-
tion, α?, when it is projected on local models. The causality of
the two local events depends on which communication model is
considered. In synchronous communication mode, the sending
and reception occur at the same time, denoted as α! = α?.
In asynchronous one, the sending occurs before the reception,
denoted as α! ≺ α?.

The causality of two consecutive interactions, α1 ≺ α2,
is considered at local level by the causality of their sending
and reception. In synchronous mode, we have (α1! ≺ α2!) ∨
(α1? ≺ α2?) ∨ (α1! ≺ α2?) ∨ (α1? ≺ α2!). In asynchronous
mode, based on the results of [17], [18], we consider three
possibilities: α1! ≺ α2! (sending), α1? ≺ α2? (reception),
and α1? ≺ α2! (disjoint). To ensure such causality of two
consecutive interactions, α1 and α2, the relations between their
sender, s1 and s2 resp., and their receiver, r1 and r2 resp.,
must satisfy one of the conditions below, depending on the
communication mode:

• synchronous mode: {s1, r1} ∩ {s2, r2} 6= ∅
• sending mode: s2 = s1 ∨ s2 = r1
• reception mode: r2 = r1 ∨ s2 = r1
• disjoint mode: s2 = r1

1

{}

0

{}

2

{}

3

{}

4

{}

7

{}

21

{}

22

{}

23

{}

req[b,v]!

rep[v,b]?

req[b,v]!

rep[v,b]?

abort[v,b]?

buy[b,v]!

sold [v,b]
? co

n
f
ir
m

[v
,b
] ?

+b
r1
[b,
s] !

+br1
[b,v]! +br1

[b,w]!

(a) Local STG of buyer

2

{}

6

{x1}

4

{}

7

{x1, x2}

8

{}

+b
r2
[b,
w] ?

sell[v,w]?〈x1〉 rep[v,w]?〈x2〉

[x
2 6=OK] τ

[x2=OK] ship[w,s]!x1

+or[w,v]!

(c) Local STG of warehouse

1

{}

0

{}

2

{}

3

{}

4

{}

5

{x1}

6

{x1}

6

{x2}

7

{x2}

8

{}

22

{}

req[b,v]?

rep[v,b]!

req[b,v]?

rep[v,b]!

+br
2
[b,v

] ?

abort[v,b]!

buy[b,v]?〈x1〉 sell[v,w]!x1 rep[w,v]?〈x2〉 +cbr[v,s]!x2

[x2=OK] +or[w,v]?

confirm[v,b]!

[x
2 6=OK] sold [v,b]

!

(b) Local STG of vendor

2

{}

7

{x2}

4

{}

+b
r2
[b,
s] ?

+cbr[v,s]?〈x2〉

[x
2 6=OK] τ

[x2=OK] ship[w,s]?

(d) Local STG of shipper

Fig. 6. Projection with additional interactions of STG in Fig. 4(b) under synchronization communication mode

These conditions enable all the participants to compute when
they may or may not do the next interaction (send or receive).
Let us go into details, for instance, with the sending mode
assumption. This mode requires that the sending of the next
interaction must happen after the one of the current interaction.
If these two interactions have the same sender, e.g., s2 = s1,
then the sender always enables this condition. Moreover, if the
sender of the next interaction and the receiver of the current
one are the same, e.g., s2 = r1, when it receives the current
interaction, it knows that the sending of the current interaction
has already occurred, and thus it may enforce the condition by
sending the second interaction.

If two consecutive transitions, e.g., s
[φ1]α1−−−−→ s1

[φ2]α2−−−−→ s2,
with α1 and α2 do not satisfy the condition above, we introduce
an additional transition at s1, e.g., s

[φ1]α1−−−−→ s′
α−→ s1

[φ2]α2−−−−→
s2. The event α does not carry a variable but it connects α1

and α2. Sender and receiver of α is determined based on
communication modes. If the sending mode is selected, then
the sender of α is either the sender or the receiver of α1,
while the receiver of α is either the sender α2. Thus with the
additional interaction, the connectedness between α1 and α,
then between α and α2 is guaranteed. For example, to ensure
the connectedness of ship and confirm in our running
example, with the sending mode, an additional interaction from

the shipper to the buyer is added as follows: s
ship[w,s].x0−−−−−−−→

s′
additional[w,v]−−−−−−−−−→ s1

confirm[v,b].〈x3〉−−−−−−−−−−−→ s2. Let us remark that,
the interaction additional[s,v] may be also added.

B. Data connectedness

In a choreography, a variable indicates not necessarily
explicitly its owned roles. However, in implementation, to
validate a guard, a role must know the free variables that
appear in the guard. Hence any free variables used by a role
(in guards or in free interactions) must be known by itself.
Intuitively, a variable is known when its value is pre-configured
before running time or its value is received from another role.
Let us remark that, value of variable x can be changed after a
bound interaction o[a,b].〈x〉 occurs, hence only a and b know
x when this interaction happens, other roles could know x if

there exists some free interactions carrying x from either a or
b to them.

If a role c uses a variable x in its guards or in its free interac-

tions, but c does not know x, e.g., s
o1

[a,b].〈x〉−−−−−−→ s1
[x>0] o2

[c,d].x−−−−−−−−−→
s2, then an additional interaction will be introduced in order
to connect data of variable x from the roles knowing it, a or b,

to c, e.g., s
o1

[a,b].〈x〉−−−−−−→ s′
additional[b,c].x−−−−−−−−−−→ s1

[x>0] o2
[c,d].x−−−−−−−−−→ s2.

The proposition of additional interactions in order to connect
data is done as in Algorithm 1. In which a proposed additional
interaction is in the form 〈t, {a, b}, c, x〉 where t is the transition
which uses variable x, hence additional interaction will be
inserted before it, and {a, b} is a set of roles which knows x
and will send x to c.

Algorithm 1: Correction of data connectedness

Input: a global STG C = (S, s0, T)
Output: set of additional interactions
let owner(s, x) as set of roles which know variable x before state s;1
E := ∅ ; // set of additional interactions2

foreach transition si
[φi]αi−−−−−→ s′i in T do3

V := fv(φi) ∪ fv(αi) ; // set variable to be verified4
a := sender(αi) ;5
foreach v ∈ V do6

if (a 6∈ owner(si, v)) then add 〈t, owner(si, v), a, v〉 to E;7

// update owner8
if (αi is a bound interaction o[a,b].〈x〉) then9
owner(s′i, x) := {a, b};
if (αi is a free interaction o[a,b].x) then10
owner(s′i, x) := owner(si, x) ∪ {b};

return E;11

C. Branching decision

A state s of a STG may have many outgoing transitions.
Each transition has a guard. If these guards are not implied
each others, then the branching at the state s is firstly decided
by these guards. Obviously, this condition cannot be determined
at syntax level but at semantic level. In such a case, s is a
conditional branching. Thanks to these guards, only one branch
can be selected at a time, and each initial role can always
compute whenever it does or does not initiate the interaction.

Contrarily, if the state s is an unconditional branching, there
are several guards that may be satisfied, hence many transitions

may be fired. The branching will be decided by the roles which
initiate interactions of each outgoing transition. A transition
s

[φ]α−−−→ s′ may be initiated by either sender or receiver of α in
synchronous mode, but only by the sender of α in asynchronous
mode. State (2) of the STG in Figure 4(b) is an unconditional
branching, while the state (7) is a conditional branching.

When many roles may decide the route, but these roles
works independently, the choreography will not be respected
since each role may select a different branch. Therefore, only
one initiator is allowed to decide the route. If a branching has
more than one initiator, a dominant initiator will be selected
to decide the route. Dominant initiator is the role which may
initiate maximal transitions, e.g., at the state (2), buyer is a
dominant role. Some additional interactions from the initiator
to the other ones will be introduced in order to complete the
control of the dominant initiator into these branches. Hence the
selection of dominant initiator adds minimal interactions. Some
additional interactions from the initiator to the other roles may
be also introduced to inform them of the selected route.

As the natural projection, see Table II, guards are preserved
only at local model of the sender. However, in the case of
conditional branching, guards are also maintained at local
models which decide the route based on these guards. A
conditional branching can be also decided as done for an
unconditional branching. However, the conditional branching
(based on data) is better than unconditional one (based on
events) since less additional interactions are added. Let us
consider a state s having m branches, of a choreography STG
with n roles. If s is a conditional branching, then we need
no more than n additional interactions which correspond to
the n roles involved in the branching. Otherwise, if s is an
unconditional branching, there are no more than (n− 1)×m
additional interactions from dominant role to n − 1 others
in order to inform selected branches. Most of existing work
does not deal with the case of conditional branchings. The
correction of branching is done as depicted by the pseudo-code
in Algorithm 2.

Algorithm 2: Correction of branching

Input: a choreography C = (S, s0, T)
Output: set of additional interaction
let R as set of roles in C;1
E := ∅ ; // set of additional interactions2
foreach s ∈ S do3

if (|outgoing(s)| = 1) then continue ; // no branching4
isConditional := true;5

foreach transition s
[φ1]α1−−−−−→ s1, s

[φ2]α2−−−−−→ s2 in outgoing(s) do6
// whether exists some value of variables s.t.7

φ1 and φ2 are satisfied
if (SOLVE(φ1 ∧ φ2)) then8

isConditional := false; break;9

if (isConditional) then continue ; // conditional branching10
// branching deciding by initiators11
select a dominant role a that participates the most of outgoing transition;12

foreach transition ti := s
[φi]αi−−−−−→ si in outgoing(s) do13

b := sender(αi); c := receiver(αi);14
foreach r ∈ R do15

if (a 6= r) ∨ (a 6= b ∧ r 6= c) then add 〈t, {a}, r〉 to E;16

return E;17

The output of the projection of the global STG, described in
Figure 4(b) under synchronous communication mode, produces

four local STGs, as shown in Figure 6, corresponding to local
models of the buyer (a), the vendor (b), the warehouse (c), and
the shipper (d). For the sake of clarity, in these local STGs, the
additional states are gray and the additional interactions start
with +, e.g., +bri for selecting branch i, +cbr for connecting
data, and +or for ordering events.

VI. EXPERIMENTAL EVALUATION

The approach proposed in this paper is fully tool–supported.
The tool is freely available online1. There exists also a web-
based application version of the tool, hence one may try it
directly with a web browser without any required configurations.
It takes as input a script file which contains global STGs
representing the choreographies to be analyzed. The output is a
set of local STGs each one representing the required behaviors
of each role in each choreography.

A. Boolean Condition Solver

The unreachable transition and conditional branching, e.g.,
the function SOLVE(φ) in the above algorithm, are checked with
the aid of the Z3 SMT solver2. Let us consider an example
of checking whether the branch at state 7 in Figure 4(b) is a
conditional branching. We need to check whether there exists
some values of x2 such that both the first branching condition
(x2 = OK) and the second branching condition (x2 6= OK) are
true. The translation in a Z3 script to check this example is
as follows:

1 (dec lare - s o r t A)
2 (dec lare -c o n s t OK A)
3 (dec lare -fun x2 () A)
4 (def ine -fun phi1 () Bool (= x2 OK))
5 (def ine -fun phi2 () Bool (not (= x2 OK)))
6 (a s s e r t (and phi1 phi2))
7 (check- s a t)

Specially, we first declared a data sort A as a general
data type. Then OK (resp. x2) is declared as a constant (resp.
variable) typed A. Two boolean functions φ1 and φ2 are
defined based on relation between x2 and OK. This very simple
example shows that these functions, variable and constant
are uninterpreted, i.e., Z3 does not use their interpretation
(concrete values) but relies on their definition supported by
a dedicated decision procedure. The check-sat command
checks if equation (φ1∧φ2) defined by the assert command
is true for some interpretations of its variables. If this is the case,
the response of check-sat is sat, otherwise, unsat, i.e.,
the equation is always false. In the example, the response will
be unsat.

B. Experiments

The experimental evaluation of the algorithm for realiz-
ability checking and choreography projection in this section
was performed on a desktop computer running 32-bit XUbuntu
13.4 (kernel 3.8.0-23-generic) with Intel Pentium 4 3.2GHz
processors and 1GB of RAM.

We first applied our tool to our choreography running
example (OSP). We then demonstrate the scalability of the tool
by applying it on examples from the literature as illustrated in

2http://research.microsoft.com/en-us/um/redmond/projects/z3/

http://research.microsoft.com/en-us/um/redmond/projects/z3/

Table III. The rows of the table correspond to the choreogra-
phies: Request For Quota (RFQ [19]), Train Station Services
(TSS [20]), Market [21], and our running example. The second
column corresponds to the inputs which are choreography
specifications defined by the number of: transitions (#Trans.),
states (#States), roles (#Roles) and operations (#Ops.). The
remaining columns are devoted to represent the checking result
of: the reachability with their verdicts (Vdict) and number
of cut-off interactions (#delInt.); the realizability, with their
verdicts (Vdict) and number of additional interactions (#addInt.),
corresponding to the four cases of communication modes,
synchronous (sync.), sending, reception, and disjoint. The last
column gives the time needed for the checking. To verify
our projection, on one hand, we recomposed the generated
local models to obtain one STG, representing the composition,
which was then compared against the choreography STG.
On the other hand, since local models of the examples
were available, we compared them with our generated local
models. The comparisons were done thanks to our Symbolic
Branching Bisimulation Conformance tool [9] in which the
conformation relation between two STG models is based on
symbolic branching bisimulation [9], [12]. The experiments
showed that our projections were correct. The experiments
can be reproduced on the web site1. The composition is done
with the operator || and the conformance checking with the
command conformance.

Additional interactions are generated to solve the conflicts
related to choreography order interaction, to branches selection
and to variables values. The Figure 7 illustrates how the
number of additional interactions is related to the number
of states, branches for each state, roles, operations and data
for the choreography under the assumption of synchronous
communication mode. To conduct the experiments, we
started from an initial configuration defined by 5 parameters
and their values, i.e., 1000 states, 5 branches, 5 roles, 20
operations, 1 data level. With this configuration we generated
a choreography STG with a tree structure and it is a 5-ary
tree. Data level 1 denotes that variables are carried by events
for all the transitions of the choreography. Data level n > 1
means that variables are still carried by events and are also on
guards. Consequently, the data level increases with the number
of variables in the guard. Based on the initial configuration,
we produced several other configurations by only varying one
parameter. For instance, to test the impact of the number of
states, as illustrated in Figure 7(a), we used 10 configurations:
(states: x, branches: 5, roles: 5, operations: 20, data: 1) with x ∈
{1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}.
Based on each configuration, we generated randomly 30
choreography STGs. We then tested on each generated STG.
The result of one tested configuration is the average of the
results of these 30 STGs.

In our formal model, only one variable is changed when an
interaction happens. Hence if a role on the next transition

TABLE III. EXPERIMENTAL RESULTS

Name [Ref.] Choreography Size Reachability Realizability (Vdict./#addInt.) Duration
(#Trans./#States/#Roles/#Ops.) (Vdict./#delInt.) sync. sending reception disjoint (seconds)

RFQ [19] 8/8/6/3 yes/0 yes/0 yes/0 no/1 no/1 0.041
TSS [20] 12/11/4/9 yes/0 yes/0 no/2 no/1 no/4 0.125
Market [21] 10/10/4/9 yes/0 yes/0 yes/0 no/1 no/1 0.077
OSP [ours] 11/9/4/9 yes/0 no/5 no/7 no/7 no/7 0.060

depends on this variable, we need to introduce only one
additional transition to transfer this variable to the concerned
role. To ensure the ordering of interactions, additional events are
added. Indeed, when an interaction e occurs, m interactions may
happen after e, e.g., the target state of e may have m outgoing
transitions. In such a case, there are no more than m additional
interactions to add in order to solve the order conflict between e
and m interactions. For the branching decision, as explained
in Section V-C, there are no more than (n− 1)×m additional
interactions from a dominant role. This latter has to inform
n− 1 roles of the selected branches. The number of additional
interactions for each configuration consists of three parts, for
data, branching and ordering. Generally, the proportions of
theses parts, data:ordering:branching, are 1:m:m× (n− 1).

To confirm our analysis on the formal model, we have
conducted several experiments that are depicted in Figure 7.
The mentioned proportions are confirmed by the obtained
results for each bar of the bar chart. Furthermore, we can
exhibit with these experiments several features of our projection.
In Figure 7(a), we observe that the number of interactions
increases with the number of states. In this case, the tree
becomes deeper. In Figure 7(b), when we vary the number
of branches, we obtain a larger tree with a higher number of
leaves, as a consequence the number of intermediate states will
decrease. This decrease will slow down the increase of the
number of additional interactions used for branching decisions.
However the number of intermediate states decreases slowly
when number of branches reaches the value 25 and higher
values. That is why we observe that the number of additional
interactions reaches a threshold. Let us note that for each
experiment only one parameter was changed and especially
here the number of states was not changed, it is why we obtain a
larger tree. Consequently, for projection concerns, it is notably
better to construct a choreography in breadth rather in depth.
Figure 7(c) shows that our method is more efficient with a
higher number of roles. Indeed, in this case, for each state,
we determine a dominant role which will have in charge to
inform the others of the selected route. However the dominant
role does not need to inform a role which is a receiver of an
interaction e on a branch since it is informed by the sender
of e. Consequently, the dominant role needs to inform less roles
when the number of roles (act as receivers) increases. Hence this
slows down the increase of the number of additional interactions
by increasing the number of roles. In Figure 7(d), we increase
the number of operations, in others words the alphabet. Such a
change has no impact on the choreography realizability as the
complexity of the choreography (initial configuration) is not
modified. Indeed, only the label, i.e., operations name, are
changed. In Figure 7(e) the number of variables is changed.
We observe that when we increase the number of variables, the
number of additional interactions increases in order to ensure
the data-connectedness (the top bar is increasing). To conclude,
hopefully the complexity of the projection with value-passing
is not totally dependent on the data complexity. The verification
times are shown in Figure 7(f). The horizontal axis represents
the 10 configurations. It illustrates once again the dependability
of realizability on the complexity of choreography.

VII. RELATED WORK

In this section, we put our work in context of the existing
choreography modeling and realizability analysis approaches

0	

5000	

10000	

15000	

20000	

25000	

30000	

1000	 2000	 3000	 4000	 5000	 6000	 7000	 8000	 9000	 10000	

N
um

be
r	
of
	 A
dd

i-
on

al
	 M

es
sa
ge
s	

Number	 of	 States	

branching	 ordering	 data	

(a)

0	

2000	

4000	

5	 10	 15	 20	 25	 30	 35	 40	 45	 50	

N
um

be
r	
of
	 A
dd

i-
on

al
	 M

es
sa
ge
s	

Number	 of	 Branches	 per	 State	

branching	 ordering	 data	

(b)

0	

5000	

10000	

15000	

5	 10	 15	 20	 25	 30	 35	 40	 45	 50	

N
um

be
r	
of
	 A
dd

i-
on

al
	 M

es
sa
ge
s	

Number	 of	 Roles	

branching	 ordering	 data	

(c)

0	

2000	

4000	

20	 40	 60	 80	 100	 120	 140	 160	 180	 200	

N
um

be
r	
of
	 A
dd

i-
on

al
	 M

es
sa
ge
s	

Number	 of	 Opera-ons	

branching	 ordering	 data	

(d)

0	

2000	

4000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

N
um

be
r	
of
	 A
dd

i-
on

al
	 M

es
sa
ge
s	

Number	 of	 Variables	 in	 a	 Transi-on	

branching	 ordering	 data	

(e)

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

V
e
ri
fi
ca
(
o
n
	 T
im

e
	 (
se
co
n
d
)	

Level	

state	 branching	 role	 opera:on	 data	

(f)

Fig. 7. Impact of number of (a) states, (b) branches, (c) roles, (d) operations and (e) variables on the realizability of choreography; and (f) verification time

for service choreographies. The comparison is presented in
Table IV. Such a comparison could not be done from a tool
perspective (in the previous section) since most of the related
work is not tool-equipped.

A. Data-Aware Interaction-based Choreography Models

Columns 2, 3 and 4 are relative to the way data is supported.
In [19], the authors discuss about using symbolic model
checking to analyze choreography but its choreography model
still bounds value domain of variables and no tool is available.

Columns 5 and 6 present the expressiveness of choreography
model. Having both loops and assignments may yield state
space explosion if one does not close the system or bound
data domains. [26]–[28] avoids state space explosion when
checking the realizability based on a syntactic analysis of
choreography specification. This will miss the cases of decision
based on data and unreachable transitions/events as discussed
in Section II. In this work, we do support loops and a limited

TABLE IV. SERVICE CHOREOGRAPHY MODELING APPROACHES

Data Expressiveness Projection
support data-aware treatment loops assign. basic smart

interaction
[22]

no

yes no yes partial
[23] yes no yes no
[20] yes no yes yes
[24] yes no yes yes
[25]

yes
no closure

yes yes no no
[26] yes yes yes no
[21] no yes no no
[27] yes yes yes no
[28] no yes yes yes
[19] bound data yes no yes no
[2] yes bound data no no yes no
ours symbolic yes limited yes yes

form of assignments through bound events.

B. Realizability Checking & Endpoint Projection

Two last columns focus on the endpoint projection. In
a top-down service choreography approach, service develop-
ers develop a global specification and project it into local
specifications. Services are then selected to implement the
local specifications. Existing approaches render the realizability
of choreography by introducing extra interactions [20], [22],
[24], [28]. Some other approaches enable the realizability by
privileging some roles in the choreography, e.g., dominant role
in [22] which decides the route in the case of non-deterministic
branching, or additional coordinators in [24], [29]. However, the
latter approaches seem to be inappropriate in the sense of the
choreography where there is no privileged roles. Furthermore
these approaches do not say how to ensure the connectedness
of events and they do not support data.

The work closes to ours is presented in [2], [28]. In [28],
the authors propose a way to repair choreography to make it
realizable and then apply the projection on it. However, this
work deals with ground values and it is done by analyzing the
syntax of choreography specification. In [2], the choreography
model is formalized by using an extension of Petri–Net where
value domain of variables is also bounded. The authors focus on
modeling choreography by extending BPMN 2.0 choreography
to support value-passing rather than endpoint projection. We
use this extending to describe our OSP running example as
in Figure 4(b). The realizability is analyzed at local traces
which are projected from the traces of choreography. The work
does not propose any solution to ensure the projection (global
conformance) and to enable the realizability.

The choreography modeling and realizability checking are
also presented in [30]–[33]. The realizability is checked in [30]
based on access control policies of local services and the
credentials that local services are willing to disclose. [31], [32]
propose tools for checking the realizability of choreography
modeled by collaboration diagrams and by BPMN 2.0. The
necessary and sufficient conditions for realizability of chore-
ographies are given in [33]. However, all these approaches do
not explicitly support data exchanged by messages and used
for routing decisions.

VIII. CONCLUSION AND FUTURE WORK

Supporting data in service choreography modeling and
analysis is a crucial issue. To address this issue, we first propose
a symbolic interaction-based choreography model with data-
aware interaction as the basic event. This model enables us to
analyse choreographies in presence of data without suffering
from state space explosion and without requiring to bound
data domains. Going further than checking realizability, we
propose a projection to generate behavioral peer skeletons with
the minimum extra interactions that ensure conformance to the
choreography. The projection supports both synchronous and
asynchronous communication modes. We have implemented our
techniques for realizability checking and projection. Our tool is
freely available online1. It includes a data-aware choreography
language that we have defined, and a transformation from this
language to our choreography model.

Future work concerns the definition of model transforma-
tions from standard choreography languages, namely WS-CDL
and BPMN 2.0. Furthermore, we will study the distributed test-
ing of choreography implementations based on the generation
of test cases or properties from the peer skeletons.

ACKNOWLEDGMENT

This work is supported by the Personal Information Manage-
ment through Internet project (PIMI-ANR-2010-VERS-0014-
03) of the French National Agency for Research.

REFERENCES

[1] G. Decker, O. Kopp, and A. Barros, “An Introduction to Service
Choreographies,” Information Technology, vol. 50, no. 2, pp. 122–127,
2008.

[2] D. Knuplesch, R. Pryss, and M. Reichert, “Data-aware Interaction
in Distributed and Collaborative Workflows: Modeling, Semantics,
Correctness,” in Proc. of CollaborateCom’12, 2012.

[3] S. Pavel, J. Noyé, P. Poizat, and J.-C. Royer, “A Java Implementation
of a Component Model with Explicit Symbolic Protocols,” in Proc. of
SC’05, 2005.

[4] F. Fernandes and J.-C. Royer, “The STSLib Project : Towards a Formal
Component Model Based on STS,” in Proc. of FACS’07, 2007.

[5] F. Fernandes, R. Passama, and J.-C. Royer, “Components with Symbolic
Transition Systems: a Java Implementation of Rendezvous,” in Proc. of
CAP’07, 2007.

[6] L. Bentakouk, P. Poizat, and F. Zaı̈di, “A Formal Framework for Service
Orchestration Testing based on Symbolic Transition Systems,” in Proc.
of TESTCOM’09, 2009.

[7] R. Mateescu, P. Poizat, and G. Salaün, “Adaptation of service protocols
using process algebra and on-the-fly reduction techniques,” IEEE
Transactions on Software Engineering, vol. 38, no. 4, pp. 755–777,
2012.

[8] J. Cámara, G. Salaün, C. Canal, and M. Ouederni, “Interactive Specifica-
tion and Verification of Behavioral Adaptation Contracts,” Information
& Software Technology, vol. 54, no. 7, pp. 701–723, 2012.

[9] H. N. Nguyen, P. Poizat, and F. Zaı̈di, “A Symbolic Framework for the
Conformance Checking of Value-Passing Choreographies,” in Proc. of
ICSOC’2012, 2012.

[10] O. Kopp and F. Leymann, “Do We Need Internal Behavior in Choreog-
raphy Models?” in Proc. of ZEUS’09, 2009.

[11] M. Hennessy and H. Lin, “Symbolic bisimulations,” Theoretical Com-
puter Science, vol. 138, no. 2, 1995.

[12] R. Van Glabbeek and W. Weijland, “Branching Time and Abstraction
in Bisimulation Semantics,” Journal of the ACM, vol. 43, no. 3, pp.
555–600, 1996.

[13] W. Deng and H. Lin, “Extended Symbolic Transition Graphs with
Assignment,” Proc. of COMPSAC’05, 2005.

[14] J. Pathak, S. Basu, R. Lutz, and V. Honavar, “MoSCoE: An Approach for
Composing Web Services through Interative Reformulation of Functional
Specification,” International Journal on Artificial Intelligence Tools,
vol. 17, no. 1, pp. 109–138, 2008.

[15] C. Gaston, P. L. Gall, and N. Rapin, “Symbolic Execution Techniques
for Test Purpose Definition,” in Proc. of TESTCOM’06, 2006.

[16] H. N. Nguyen, P. Poizat, and F. Zaı̈di, “Online Verification of Value-
Passing Choreographies through Property-Oriented Passive Testing,” in
Proc. of HASE’2012, 2012.

[17] I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro, “Bridging the Gap
between Interaction- and Process-Oriented Choreographies,” in Proc. of
SEFM’08, 2008.

[18] H. N. Nguyen, P. Poizat, and F. Zaı̈di, “Passive Conformance Testing
of Service Choreographies,” in Proc. of SAC’12, 2012.

[19] R. Kazhamiakin and M. Pistore, “Choreography Conformance Analysis
: Asynchronous Communications and Information Alignment,” in Proc.
of WS-FM’06, 2006.

[20] G. Salaün, T. Bultan, and N. Roohi, “Realizability of Choreographies
Using Process Algebra Encodings,” IEEE Transactions on Services
Computing, vol. 5, no. 3, pp. 290–304, 2012.

[21] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro, “Choreog-
raphy and Orchestration Conformance for System Design,” in Proc. of
COORDINATION’06, 2006.

[22] Z. Qiu, X. Zhao, C. Cai, and H. Yang, “Towards The Theoretical
Foundation of Choreography,” in Proc. of WWW ’07, 2007.

[23] M. Bravetti and G. Zavattaro, “Towards a Unifying Theory for Chore-
ography Conformance and Contract Compliance,” in Proc. of SC’07,
2007.

[24] G. Diaz and I. Rodriguez, “Automatically Deriving Choreography-
Conforming Systems of Services,” in Proc. of SCC’09, 2009.

[25] H. Yang, X. Zhao, Z. Qiu, G. Pu, and S. Wang, “A Formal Model for
Web Service Choreography Description Language (WS-CDL),” in Proc.
of ICWS’06, 2006.

[26] J. Li, H. Zhu, and G. Pu, “Conformance Validation between Choreogra-
phy and Orchestration,” in Proc. of TASE’07, 2007.

[27] Z. Xiangpeng, Y. Hongli, and Q. Zongyan, “Towards the Formal Model
and Verification of Web Service Choreography Description Language,”
in Proc. of WS-FM’06, 2006.

[28] J. Sun, Y. Liu, J. S. Dong, G. Pu, and T. H. Tan, “Model-Based Methods
for Linking Web Service Choreography and Orchestration,” in Proc. of
APSEC’10, 2010.

[29] M. Autili, D. Di Ruscio, A. Di Salle, P. Inverardi, and M. Tivoli,
“A Model-Based Synthesis Process for Choreography Realizability
Enforcement,” in Proc. of FASE’13, 2013.

[30] F. Paci, M. Ouzzani, and M. Mecella, “Verification of access control
requirements in web services choreography,” in Proc. of SCC’08, 2008.

[31] T. Bultan, C. Ferguson, and X. Fu, “A Tool for Choreography Analysis
Using Collaboration Diagrams,” in Proc. of ICWS’09, 2009.

[32] P. Poizat and G. Salaün, “Checking the Realizability of BPMN 2.0
Choreographies,” in Proc. of SAC’12, 2012.

[33] S. Basu, T. Bultan, and M. Ouederni, “Deciding Choreography Realiz-
ability,” in Proc. of POPL’12, 2012.

