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1
Introduction

My work addresses the application of formal methods to the development of software,
that is formal software engineering. Software engineering is concerned about techniques
and tools to build software pieces. More than providing a theoretical background for
software engineering, formal methods support well-foundedness of the development process,
including non ambiguous models and model transformations, and enable the automation
of the whole, or parts of, the design and programming activities.

In this context, I have always been interested in the role played by structuring and
composition. Blame it on the brick games of my early days, or on my enthusiastic discovery
of object-oriented programming in the early 90’s, I have always found interesting to build
complex things out of simpler, smaller pieces, especially when one ends up reusing pieces
out of some initial blueprint.

This document presents my recent work on structuring in software engineering. It
does not try to give a comprehensive presentation of all my research works, nor to give
comprehensive technical details that can be found in my papers1.

In this chapter I first introduce the software architecture vision that is a consequence
of structuring and composite software systems. Being agnostic to the software target
technologies (e.g., programming languages and middleware infrastructures) and to the
formal methods been used in the development process, I will present first the software
architecture concepts in a generic way, as done in Architectural Description Languages,
before showing how these concepts instantiate on service architectures. I will then introduce
composite system development processes and related issues. After stressing the recurrent
principles in my work, I will finally present an overview of my contributions to these issues.
This chapter also includes a short presentation of the formal models I use in my works. It
can be skipped in a first reading.

1Most of my papers are available in my Web page. Further, five selected papers will be attached to this
document.
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2 CHAPTER 1. INTRODUCTION

1.1 Software Architectures

Motivation

A major issue one meets when designing a software system is its complexity. Complexity
stems first from the size of the system, or from the different aspects that are to be taken
into account when developing it. With recent outcomes both in industry (inter-enterprise
applications) and for the end-users (social networks, electronic devices and increased
connected mobility), software systems get more distributed, shared, and subject to on-
demand construction and change than before. Accordingly software complexity increases
since several software entities constituting the systems have to be taken into account.
Further, these entities do not exist independently from one another. Their interactions are
an important part of the problem as they can lead both to benefits (achieving some form
of collaboration or cooperation) or to major drawbacks (deadlocks, starvation or incorrect
multiple access to resources, etc.).

To solve out such complexity issues, approaches based on the decomposition of a
system into sub-systems can be put into practice, whether is it for design, verification, or
implementation. Behind the scene of such a decomposition, lies an important concept:
structuring. It has been instantiated several times in the past years with approaches
based on modules [Parnas, 1972], objects/classes [Dahl and Nygaard, 1966, Meyer, 1997],
software components [Szyperski, 1998], services [Papazoglou and Georgakopoulos, 2003],
aspects [Filman et al., 2005] or software product lines [Pohl et al., 2005].

Software components make the functionalities provided by some reusable entity explicit,
as modules and objects/classes did. However, software components go further by making
also the required functionalities explicit. Having both provided and required functionalities
explicit supports the definition of software components independently from a specific usage
context. This makes, in theory, software components more reusable than modules or
objects/classes where requirements are hidden in the code. Services are the basic entities
that underpin the development of Service-Oriented Architectures (SOA) and Service-
Oriented Computing (SOC). But for differences in description languages and underlying
middleware, services can be seen as a kind of software components. Aspect-orientation
is a more asymmetric approach, where some first class entity, the base business model or
code, is extended with the integration of one or several second class entities called aspects.
Software product lines are another modern application of structuring, where products are
the result of the integration of core elements and variation-related ones.

All the above-mentioned approaches lead to new software design processes with two
distinct tasks2:

• “designing in-the-small”, the design, verification, and implementation or reuse of
sub-systems satisfying a subset of the system’s functionalities or corresponding to
deployment units.

2The terms “designing in-the-large” and “designing in-the-small” are variations inspired from the terms
“programming in-the-large” and “programming in-the-small” first introduced in [DeRemer and Kron, 1976].
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• “designing in-the-large”, the structuring of the system as a set of sub-systems linked
by dependency or interaction relations, a kind of structural blueprint of the system.
In an analogy to building construction where buildings are constructed using an
assembly plan for sub-parts (ground, walls, roof), such a blueprint can be referred to
as the architectural plan or software architecture of the system, and the person in
charge for its definition can be called a software architect.

Elements of an Architecture

In parallel with the development of structured design and programming techniques, the
application of formal methods to the architectural vision of software has emerged with
Architectural Description Languages (ADLs) [Medvidovic and Taylor, 2000], Coordination
Models and Languages [Papadopoulos and Arbab, 1998], and more generally the applica-
tion of formal methods to Component Based Software Engineering (see, e.g., the FACS
series of conferences) and Service Oriented Computing (see, e.g., the ICSOC series of
conferences). In the sequel, I adopt the ADL terminology (Fig. 1.1) to present architectural
elements due to its technology agnosticism.

ComponentInterface ConnectorInterface

Component ConnectorInterface

Configuration

1 1

0..*1..*

Port Role
1..* 1..*

binding

Figure 1.1: Simplified ADL metamodel (UML notation)

Components and Connectors

The basic elements of an architectural model are components and connectors. A component
is the basic architectural entity that abstracts some information being available or some
piece of code being reusable. To quote [Medvidovic and Taylor, 2000], “A component is a
unit of computation or a data store [...]. Components may be as small as a single procedure
or as large as an entire application”. The basic motivations that trigger the encapsulation
of some information or piece of code as a component are the decomposition of a complex
system into smaller sub-systems – the system components – and their interactions, or the
desire to enable reuse, following the definition of Szyperski [Szyperski, 1998]: “A software
component is a unit of composition with contractually specified interfaces and explicit context
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dependencies only. A software component [...] is subject to composition by third-parties”.
The former case integrates perfectly in a top-down vision of the software engineering process
(decompose to simplify), while the later case corresponds to a bottom-up vision (building
value-added systems out of simpler ones).

A connector is the basic architectural entity that abstracts some type of interaction
between components. A shared variable in a threaded Java program, a Unix pipe between
two commands, a socket between a client and a server, a JDBC connection between a Java
program and some database, an HTTP connection between a browser and a Web server,
the SOAP connections between an orchestration and basic Web services, tuple spaces, etc.
are all examples connectors in every-day life. It is a matter of discussion if there should be
any (explicit) connectors at all. Some ADLs have no explicit connectors. It is particularly
relevant when there are few kinds of interactions between components, e.g., in Web service
composition where SOAP over HTTP is the standard usage. Other ADLs advocate that if
connectors are complex they should be defined as components, having again only simple
bindings between “component” components and “connector” components, e.g., a complex
interaction between two Web services will lead to an orchestration component rather than
a connector.

Interfaces

If we refer to the Oxford online dictionary [Oxford University Press, 2010], an interface is
“a point where two systems, subjects, organizations, etc. meet and interact”. From a software
point of view, the interface of an entity is both the operational mechanism through which
this entity interacts with its environment (e.g., a protocol information, an IP address, and
a port, such as http://127.0.0.1:8080/), and the contractual specification of the entity
functionalities (e.g., “this service provides you with the possibility to buy a trip package
provided you give the departure and return dates/places, and for this it will require some
plane ticket and hotel booking facility are available”, Fig. 1.2).

As we saw before, an important benefit with reference to earlier approaches is that
this specification explicits both the functionalities provided by the entity (here the trip
package) and the ones it requires (here online services for plane and hotel booking).
The first interpretation of interfaces is mandatory to enable implementability of software
architectures. It gives an answer to the question “Where can I access this entity?”. However,
ADL go further by using extensively the second interpretation and associated information,
and giving an answer to the question “What and how can this entity do something for me?

– What and how should I do something for this entity?”. Many ADLs refine interfaces as a
set of interaction points that correspond to the first interpretation. An entity has then
one interface, made up of one or several interaction points that can be either provided or
required. In the component interfaces, these interaction points are called ports, while in
the connector interfaces, they are called roles (they correspond to roles that components
may play in an interaction).

As an alternative to entities having one interface with several interaction points, one
may consider entities that have several interfaces and then do not decompose these into
several interaction points, both notions coinciding. Web services for example take this
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second interpretation. Let us take a composite Web service. It has different partners it
will communicate with. These can correspond to end-users, programs, or other services
that will fulfill some functionality for the composite. For each of these partners there is a
port, called partner link, which is described using the WSDL language [W3C, 2001].

It is also usual that ports are detailed into sets of operations, the operation being the
element being called, and the port being the place where the call is issued. Indeed, many
different kinds of information can be associated to an interface (or respectively to ports and
roles). This are often classified using four interface description levels [Canal et al., 2006]
and respective interface description languages (IDL):

1. Signature level. This is the state-of-the-art of mainstream component and service
middleware, e.g., CORBA or SOA such as Web services. Interface descriptions at
this level specify the methods or services that an entity offers, as in object IDLs, like
CORBA-IDL, or the public interface of a Java class. Sometimes, they also describe its
external dependencies, like in component IDLs like CCM-IDL for OMG’s component
model, or WSDL for Web Services. Typically, these interfaces specify the name of
the service, the type of its arguments and return values, and possibly the exceptions
raised, that is, the full signature of the entity behind the interface. This is typically
what is described in Figure 1.2.

TripService
tripClient plane

hotel

PlaneService
planeClient

HotelService
hotelClient

operation book
inputs from:string,to:string,
           departure:date,return:date
           hotelstars:integer
outputs eticket:string,
             hotel:Hotel

operation bookPlane
inputs from:string,to:string,
           departure:date,return:date
outputs eticket:string

operation setup
inputs from:string,to:string,
           departure:date,return:date
outputs sessionid:integer
operation book
inputs sessionid:integer
outputs information:Hotel
operation cancel
inputs sessionid:integer

operation bookPlane
inputs from:string,to:string,
           departure:date,return:date
outputs eticket:string

operation setup
inputs from:string,to:string,
           departure:date,return:date
outputs sessionid:integer
operation book
inputs sessionid:integer
outputs information:Hotel

Figure 1.2: Signature interfaces (Acme ADL notation)

2. Behavioral level. Interfaces at this level specify the protocol describing the in-
teractive behavior that a component follows, and possibly the behavior that it
expects from its environment. Behavioral descriptions are required for entities



6 CHAPTER 1. INTRODUCTION

setup
book

cancel

setup ; (book ;     + cancel ;     )
√√

Figure 1.3: Behavioral interface (process algebraic and LTS notations)

with state, providing non-uniform services which are not available at any time,
but that depend for example on the internal state of the entity or on the past
history of interactions with their partner(s). This level is essential because the
reuse and composition of components can lead to deadlocks or erroneous situa-
tions if one is not aware of their execution flows and does not take them into
account while building the systems [Vallecillo et al., 2000]. Numerous proposals have
been made for the extension of component interfaces with behavioral descriptions,
e.g., [Plášil and Visnovsky, 2002, Inverardi and Tivoli, 2003, Bracciali et al., 2005,
Poizat and Royer, 2006, Barros et al., 2009]. It is also the case for (Web) services,
e.g., [Ben Mokhtar et al., 2007, Grigori et al., 2008, Bertoli et al., 2010]. Despite po-
tential benefits (automated verification, adaptation and composition) many compo-
nents do not present a behavioral interface. However, one may retrieve behavioral
interfaces using process/protocol mining [Musaraj et al., 2010, van der Aalst, 2011],
learning [Steffen et al., 2011], or testing [Bertolino et al., 2009]. ADLs with behav-
ioral interfaces rely, for description and analysis, on formal behavioral model such as
(labeled) transition systems (LTSs), Petri nets, or process algebras (see Sect. 1.5). Let
us take again the trip service example. To be used, HotelService requires that its user,
TripService, calls its three operations in a specific ordering. Such usage protocol can
sometimes be inferred from the signature. Here, both the book and cancel operations
require as input a session identifier that is provided by operation setup. However, in
general behavioral signatures must be given. In our example, setup must be done
first, and then either book or cancel may be called (Fig. 1.3, where ;, +, and

√
denote

respectively sequence, choice, and termination). This cannot be inferred from the
signature.

3. Semantic level. This level describes what the entity actually does, not only the
methods it offers, or the messages it exchanges. Such a kind of specification is
particularly interesting for component mining, e.g., automatic service discovery and
selection [Benatallah et al., 2005b, Hacid et al., 2009]. In the field of Web services,
this level of description is related to the Semantic Web, e.g., using ontologies or de-
scription logics, and languages such as OWL/OWL-S or WSMO [Toörmä et al., 2008].
An alternative approach consists in using formal functional descriptions for specifying
functionality, e.g., preconditions and postconditions for the signature level operations.

4. Non-functional level. Numerous non-functional properties like security, reliability,
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accuracy, cost, etc. are important to be taken into account when composing entities
altogether. These properties are tackled by the non-functional interface description
level. It is usually highly customizable, and the possible descriptions include mean
values, standard deviations and a set of quantiles characterizing the distribution
of any self-defined quality metric. This description level is of particular interest
both for architectural analysis [Bernardo et al., 2002, Balsamo et al., 2004] and for
component mining [Zeng et al., 2004, El Haddad et al., 2010].

If most works on software architectures associate with interfaces only a subpart of these
four levels, the genericity and extensibility principles of interfaces promote that one can
put in an interface description whatever is required to ease specification, analysis, and/or
implementation. In my work, I have focused on the first three description levels.

Configurations

An (architectural) configuration is the description of an assembly of components (i.e., a set
of identified instances of component types) and connectors (i.e., a set of identified instances
of connector types). The relations between components (exchanging provided/required
functionalities) is achieved through connectors and the binding of component ports to the
different roles of the connectors.

Configurations represent an architectural viewpoint over a system. Different abstractions
(e.g., whether we are at design time, or at deployment time where deployment constraints
are highly relevant) can lead to different configurations. Configurations enable the designer
to check the system’s architecture. Further, once a deployment scheme has been chosen
(e.g., if, for each component, an address is given) then automatic deployment of the system
is possible.

An important benefit of configurations, when it comes to take the systems’ complexity
into account, is the possibility to build composite components, i.e., to treat a configuration
as a component and (re-)use it in further configurations. For this, it must be possible to
relate the ports of the composite components to the ports of its sub-components. Composite
components enable a divide-and-conquer strategy where, for example, a first decomposition
level of a system can be made based on deployment issues (e.g., having three high-level
components in the system corresponding to three Web services deployed on three application
servers), while in a second step each of these three components can be refined as a composite
using a configuration made up of functional (business) sub-components (e.g., implemented
using Java classes). SOFA [Plášil and Visnovsky, 2002], Fractal [Barros et al., 2009], and
the Service Component Architecture (SCA) [Open SOA, 2007] are examples of frameworks
that are highly relying on composite components.

Composite components raise the compositionality issue. An architectural language
or an architectural model is compositional if, not only is it possible to define composite
components, but also the semantics of the configuration in the composite component can
be related to the semantics of a component. This is the case with most formal ADLs with
behavioral signatures: given the behaviors of all the components (and connectors, if not
implicit) in a configuration, it is possible to retrieve the behavior for the configuration.
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Compositionality raises the possibility of compositional verification of the architectures,
i.e., verify a composite component without computing the global behavior but rather
taking into account only the sub-components’ behaviors and their connections. Reasoning
on composite components is not restricted to behavioral descriptions but it also applies to
non-functional service descriptions, e.g., to retrieve the value of quality of service attributes
for composite components being given the value of these attributes for the sub-components.

1.2 Service Architectures

The ADL terminology presented above directly instantiates into concrete languages, mod-
els, and technologies such as the CORBA Component Model, the Service Component
Architecture, or the Fractal Component Model. Service-Oriented Architectures (SOA)
are becoming a key aspect for system agility and quickly developing new businesses. As
core concepts of any SOA-based system, services have recently received significant interest.
They can be used to support business-to-business, enterprise application integration, and
collaborations within or between virtual enterprises/organizations. Services have also been
used to encapsulate information in sensors and compose it. Web services constitute one of
the most popular approach to implement the paradigm of service and are gaining industry
acceptance and usage. They are also now studied in most university curriculums. For these
reasons, it seemed to me natural to target Web services as the applicative domain related
to my work on the application of formal methods to composite system development.

Table 1.1: Analogy between the ADL and WS terminology

ADL WS

basic component simple service (WSDL service)

configuration, composite component composite service (orchestration,
distributed orchestration, choreography)

signature interface WSDL interface(s)

behavioral interface conversation

semantic interface semantic annotations in a WSDL file

A rapid analogy between the general ADL terminology and the Web service one can be
done as shown in Table 1.1. I will present here the basic concepts of Web services required
for the rest of the document. For a deeper introduction to the Web service domain, I refer
to [El Haddad et al., 2009].

Simple services. Simple Web services advertise the functionalities they offer as a set of
operations provided at a given port. This is defined in a Web Service Description Language
(WSDL) interface [W3C, 2001]. Operation call, operation return, and faults are supported
using messages, with operation input and output parameters being defined in the messages
types. Operations may either be one way, with one input message, or two-way, with one
input message and one output message.

Composite services: orchestration vs. choreography. Composite services may be
implemented in a centralized way. This is orchestration (Fig. 1.4), where all messages pass
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through the centralized composite service called orchestrator, and where other services are
sub-services of the composition.

Seller
(sub-service)

Shipper
(sub-service)

Customer
(orchestrator)

product name
billing address
shipping address

bill
product 

product
ack

buy

ship

shipping address
product reference

sessionid
ack

bill

order2

client seller

shipper

user

user

product name
billing address

sessionid
product reference

order1

Seller.user = order1 ; order2
Seller = user.order1? ; user.order1! ;
              user.order2? ; user.order2!

Shipper.user = ship
Shipper = user.ship? ; user.ship!

Customer.client = buy
Customer.seller = order1 ; order2
Customer.shipper = ship
Customer = client.buy? ;
                     seller.order1! ; seller.order1? ;
                     shipper.ship! ; shipper.ship? ;
                     seller.order2! ; seller.order2? ;
                     client.buy !

Figure 1.4: Orchestration and behaviors (Acme ADL + process algebraic notation)

Composite services may also be implemented in a distributed way. This is choreography
(Fig. 1.5), where services are partners and communicate in a peer-to-peer fashion. The
term choreography is also used to denote a kind of composition specification, and the
distributed implementation may be called distributed orchestration. Indeed, choreographies
are usually implemented using several orchestrators (one for each partner service).

Seller
(orchestrator)

Shipper
(orchestrator)

Customer
(orchestrator)

product name
billing address
shipping address

bill
product 

product name
billing address

bill

product

product reference

buy order

ship

setup

shipping address

ack

client seller

shipper

user

user seller

shipper

product
ack

order1

Seller.shipper = setup
Seller.user = order
Seller = user.order? ; user.order! ;
              shipper.setup! ; shipper.setup?

Shipper.seller = setup
Shipper.user = ship
Shipper = user.ship? ; seller.setup? ;
                  seller.setup! ; user.ship!

Customer.client = buy
Customer.seller = order
Customer.shipper = ship
Customer = client.buy? ;
                     seller.order! ; seller.order? ;
                     shipper.ship! ; shipper.ship? ;
                     client.buy !

Figure 1.5: Choreography and behaviors (Acme ADL + process algebraic notation)
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WS-BPEL, a composite service execution language. On top of a set of interfaces, an
orchestrator is the implementation of a composition. Hence, an executable language should
describe in which order the messages from/to different partner interfaces are received/sent.
Many different languages can be used for this. All-purpose languages such as Java can be
used provided a Web service stack is available (XML and RPC libraries for example). If the
orchestrator is also to be a service (that is, its “input” ports are Web service ports) then
an application server is required for deployment. However, the domain specific language
paradigm prescribes that specific languages should be used for service orchestration. The
widely accepted one is the Web Service Business Process Execution Language [OASIS, 2007]
(WS-BPEL, or BPEL for short). One should note, still, that since BPEL execution engines
can be heavyweight, some people have promoted the definition of lightweight orchestration
languages such as JCWS [Boutrous-Saab et al., 2009] including the most useful BPEL
constructs, i.e., communication and workflow related ones, in pure Java.

The BPEL language is a workflow language based on an expressive set of activities
enabling the orchestration of Web services. While the BPEL objective is to define executable
orchestrations (i.e., running on some execution engine), ABPEL has been defined to describe
non-executable abstract processes such as behavioral interfaces. ABPEL is based on the
same set of activities as BPEL. Here, I present the main ones. However, I advocate that this
subset is the one that is to be found in (A)BPEL behavioral interfaces. A comprehensive
presentation of BPEL can be found in [El Haddad et al., 2009].

Communication activities specify the communications between service partners. re-
ceive(o,(v1, . . . , vn)) denotes the reception by a service of a message request for operation o
with received data stored in variables vi. reply(o,(v1, . . . , vn)) denotes the corresponding
reply by the service with output data taken from variables vi. Accordingly, a service can
call a partner service operation o using invoke(o,(v1, . . . , vn),(v′1, . . . , v

′
m)) where sent data

are stored in variables vi and returned values to be stored in variables v′j . When the
operation is one-way (no return) one simply writes invoke(o,(v1, . . . , vn)). Note that one
only represents the operation name (o) in communication activities for simplicity. Taking
into account both partner link p and operation name o, can be done through prefixing (p.o).
Assignment (:=) supports data computation. exit denotes an empty (e.g., terminated)
process. In addition to these five basic activities, BPEL defines workflow-based structur-
ing activities: sequence (sequence(P1, . . . , Pn)), conditional activities (if(cond,Pthen,Pelse)),
loops (while(cond,P )), and parallel flow (flow({Pi})). BPEL also supports multiple event
processing (pick({onMessage oi, (v1i , . . . , vni): Pi}[,onAlarm Palarm])) where evolution of
the process is triggered depending on either reception of a given message (onMessage
oi, (v1i , . . . , vni) : Pi yields Pi will be executed when message requests for operation oi are
received) or on a timeout (onAlarm Palarm).

Orchestration specification. Abstracting away from the specification languages (see
below for some examples), one can focus on the way orchestration specification is performed.
If one wants to focus on the architecture of it, then an ADL can be used. If one want to
focus on behavioral analysis, then there are different choices. The first one is to specify a
user interface only, i.e., the interaction protocol between the user (or any other system
being the client of the orchestrator) and the orchestrator (e.g., Customer.client in Fig. 1.4).
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This is the way one end-user would define its requirements for an orchestration to be.
Another solution is to specify all interfaces of the orchestrator, i.e., for each sub-service, the
interaction protocol between the orchestrator and this sub-service (e.g., Customer.seller and
Customer.shipper in Fig. 1.4). Such local protocols may be defined either at the operation
level (as done, above) or at the message level. The third choice is to specify the whole
orchestration protocol. However, in an implementation, the executable orchestration code
combines messages being exchanged at all interfaces, hence protocols in this case are to be
defined at the message level (e.g., Customer in Fig. 1.4 where ? denotes a message reception
and ! denotes a message sending).

There are numerous possible specification languages for the specification of an orches-
tration, including general purpose ones such as UML state transition and activity dia-
grams [OMG, 2005], workflow specific ones such as BPMN [OMG, 2011], and service specific
ones such as ABPEL [OASIS, 2007], standardized by W3C, or SRML [Fiadeiro et al., 2006]
and UML4SOA [Mayer et al., 2008], recent outcomes of the SENSORIA project. Such
a freedom is important since there is no universal specification language. Yet, workflow
languages are often advocated due to their relation with concepts in BPEL that is, after
all, an executable workflow language.

In their work [van der Aalst et al., 2003], Van der Aalst and his colleagues have intro-
duced twenty control flow patterns that are recurrent in workflow languages and specifica-
tions. This is only a part of all possible patterns (http://www.workflowpatterns.com/). It
would not be feasible to present all of them here. However, it is possible to select a small
subset of the control flow patterns that suits service orchestration and related implementa-
tion languages. We may define this subset as follows. Given a set of activity names A, a
Workflow (WF) defined over A is a tuple WFA = (P,→, N) [Kiepuszewski, 2003]. P is
a set of process elements (or workflow nodes) which can be further divided into disjoint
sets P = PA ∪ Pso ∪ Psa ∪ Pjo ∪ Pja, where PA are activities, Pso are XOR-Splits, Psa are
AND-splits, Pjo are XOR-Joins, and Pja are AND-Joins. →⊆ P × P denotes the control
flow between nodes. N : PA → A is a function assigning activity names to activity nodes.
Relation with other notations such as BPMN processes and UML activity diagrams is
straightforward (Fig. 1.6).

initial activity final activity parallel
(split/join AND)

choice
(split/join XOR)

workflow notation

activity diagram
notation

Name

activity

Name

Figure 1.6: Workflow graphical notations (BPMN and UML notations)

Specification and verification (compatibility, architectural deadlock-freedom, tem-
poral properties) both at the local and global level have been well studied in formal
ADLs [Allen and Garlan, 1997, Bernardo and Inverardi, 2003] and more recently rephrased
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in a service composition context [ter Beek et al., 2007]. Using them, one can check for
example that Customer.seller and Seller.user in Figure 1.4 are compatible, or that the
choreography (distributed orchestration) in Figure 1.5 is deadlock-free.

Choreography specification. Choreography as a specification language is the description
from a global perspective of the interactions between roles played by peers (components,
services, organizations, humans) in some collaboration. Several languages and notations
do support choreography specification: BPMN 2.0, MSC, UML, WS-CDL to give some.
Following [Decker et al., 2008], they can be classified using two dimensions. They can be
abstract (e.g., BPMN, MSC, UML) or concrete (e.g., WS-CDL). Specification languages
are used to describe what peers should (or should not) do in a collaboration, rather than
how they should do it. Therefore, abstract choreography languages are better candidates
for choreography specification. The second dimension is related to the underlying model. In
interconnected interface models (e.g., BPMN collaboration diagrams, MSC, UML sequence
diagrams), conversations are defined at (each) peer level and interactions are defined by
roughly connecting conversations. To the contrary, in interaction models (e.g., BPMN 2.0
new choreography diagrams, UML collaboration diagrams), interactions between peers are
the basic building blocks. From a designer perspective, interaction models better suit the
needs of choreography specification due to their global perspective.

To understand the difference between a choreography specification and an orchestration
one, let us take again our example in Figure 1.5. What we have here is three orchestration
specifications (Customer, Seller, and Shipper). They could also be seen altogether as an
interconnected interface model choreography specification, with connections being the gray
arrows. An interaction model choreography specification would rather be described using
any behavioral language (some being given above, but LTS or process algebras would work
too) where atoms are interactions (that may thereafter be implemented using message
exchanges or not). Such an atom can be denoted as c[x,y], where c is the interaction, and
x and y are the interacting partners, with x being the initiator of the interaction. The
corresponding specification could then be given as follows:

Choreo = order[Customer,Seller]; order[Seller,Customer];

ship[Customer,Shipper]; setup[Seller,Shipper];

setup[Shipper,Seller]; ship[Shipper,Customer]

As for orchestration specifications, choreographies may be verified, e.g., [Busi et al., 2006,
Qiu et al., 2007, Foster et al., 2010, Basu and Bultan, 2011, Roohi and Salaün, 2011] for
some recent references.

In the sequel, the composite systems development issues will be presented with a (Web)
service perspective using the concepts that have been presented here.

1.3 Composite System Development

As mentioned in Section 1.1, software architectures enable both in-the-small and in-the-
large development processes. Further, these processes are based on three distinct phases:
development time, deployment time, and execution time (Fig. 1.7).
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Figure 1.7: Activities in composite system development

In-the-small development. As far as in-the-small development is concerned, nothing
changes from an usual process supported by formal methods (Fig. 1.7, upper part). Given
some requirements, a model is designed. This model can be verified to check that it
satisfies the requirements. For this, behavioral analysis techniques may be used, including
model-checking. The model may then serve as a basis for implementation, which is further,
verified using testing.

    execution

in the small

in the large chapter 2

chapter 3

deploymentdevelopment

testingverification

Requirements Model ImplementationModel

Figure 1.8: Verification (at design time) and testing

Design time verification and testing are complementary (Fig. 1.8) [Gaudel, 2011]. On
the one hand, the former is required to ensure that one is not testing the implementation wrt.
an erroneous model. On the other hand, excepted if one has access to the implementation
code and a model of the running environment (in such a case, static analysis can be used),
testing is required to check if the implementation conforms to its model. Moreover, due
to their complexity, design time verification often abstracts away from some part of the
systems. This can be for example time constraints (requiring more expressive formal
models) or data being exchanged (raising state explosion issues). This over-approximation
may lead to false negative results of verification. In such a case, testing may help in refining
the abstraction [Beckman et al., 2010]. Testing is even more necessary with dynamic
architectures such as services since the components to be reused are not always known in
the earlier steps of composite systems development.



14 CHAPTER 1. INTRODUCTION

In-the-large development. Software architectures are most beneficial for in-the-large
development, especially through partially or totally automated techniques for the com-
position, adaptation, testing, and repair of compositions (Fig. 1.7, lower part). Software
architectures support both a bottom-up and a top-down development process (Fig. 1.9).
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Figure 1.9: Bottom-up vs. top-down development

In a bottom-up process (Fig. 1.9, left), we begin with an orchestration specification
and services to be reused, which may result from discovery (all services available in some
repository that satisfy a given requirement are gathered) and selection (the best service(s)
from the gathered ones are kept). In this document I will abstract from these two steps and
suppose it as a preliminary. Recent works would be reusable here, either working on be-
havioral [Brogi and Corfini, 2007, Grigori et al., 2008], semantic [Benatallah et al., 2005b,
Hacid et al., 2009], or non functional [Zeng et al., 2004, El Haddad et al., 2010] research
criteria. The next step is to compose the services through first the retrieval of an orches-
trator model (Fig. 1.9, left, 1) and second the implementation of this model (Fig. 1.9, left,
2). Finally the resulting orchestration is tested (Fig. 1.9, left, 3).

In a top-down process (Fig.1.9, right), we begin with a choreography specification,
that is a global requirement. Using peer projection, local requirements can be gener-
ated [Qiu et al., 2007, Li et al., 2007] (Fig. 1.9, right, A2). An important issue here is
realizability. It checks if the composition of such peer requirements obtained by projection
from a choreography would expose or not exactly the same behaviors as the choreography
(Fig. 1.9, right, A1).

Take for example choreographies C1 = m1
[P1,P2];m2

[P3,P4] and C2 = m1
[P1,P2];m2

[P3,P1].
C1 specifies that P1 and P2 must first interact on message m1 (with P1 being the initiator
of the interaction) and then P3 and P4 will interact on message m2 (with P3 being the
initiator). It is not realizable since there is no possibility for P3 to know before sending m2

that P1 has sent (or P2 has received) message m1. In a distributed setting, implementing
P1 (resp. P3) as sending m1 (resp. m2) we could have the case where m2 is sent before
m1 which is forbidden by the choreography. Another issue is that realizability depends
on the kind of communication. Take C2 and suppose that P3 sends m2 and that P1 is
implemented as first sending m1 and then receiving m2. In a synchronous setting, the
choreography is realizable since P3 will be blocked upon sending m2 until P1 is ready to
receive it. However, in an asynchronous setting, we would have the same problem as above.

Complementary to realizability is to check conformance: peer requirements are manually



15

written and are then compared to the choreography (Fig. 1.9, right, B). After checking, the
peers may be either implemented directly (using an in-the-small process for them, Fig. 1.9,
right, 3) or through reuse and composition (using the peer requirements as orchestration
specifications and applying a bottom-up process for peer implementation, Fig. 1.9, left,
1–2). In both cases, testing is finally performed on the resulting distributed orchestration
(Fig. 1.9, right, 4)

Composition. The composition (or coordination) of reusable software services enables,
in theory, to gain time and money. In practice, if it is not automated, it is a complex and
time-consuming activity: one must understand what a service does, how to reuse it and
combine it with others, and check that the resulting assembly fulfills in practice the initial
composition requirements. Automated service composition [Marconi and Pistore, 2009]
tackles this issue with techniques for the discovery, selection, and assembly of services
into composite services than can be deployed automatically. After being concerned about
facilitating the enterprise software architects duties, automated service composition finds
new applications with on-demand composition for the end-users and the “software as a
service” cloud paradigm. The expressiveness and precision of the techniques is mainly
related to the expressiveness and precision of the service descriptions, that is of their
interfaces for which we have seen there are four different description levels.

A simple case is when the composition requirements are given as an abstract workflow
(atoms are activities to be instantiated by service calls) and services have no conversation.
If workflow and services are given at the same description level (operation or semantic
capability for both), composition is mainly a matter of discovery and selection of the –
locally or globally – best service for each activity in the workflow. However, an issue may
arise. If the instantiated workflow, i.e., the orchestration to-be, is correct from a control
flow point of view (it naturally respects the abstract workflow behavior), it may not be
correct with reference to a data flow point of view: some data being required for a service
operation call may not be available in-time or as-is from previously called services. This is
horizontal mismatch. Having requirements and services described at the same level is not
always realistic, especially in case of on-demand composition from end-user requirements.
Here the requirements would probably be described at an higher level (semantic data flow
and capability control flow) while services would be described at a lower, implementation
compatible, level (operations). This is vertical mismatch.

Further, services may present conversations. In such a case it is mandatory that the
way the instantiated workflow uses the sub-services is compatible with their conversation.
A typical example is given in Figure 1.10 where both services and composition require-
ments present conversations. Further, services are described at the operation level, and
requirements at the capability level. Here we have three services, Conf to get conference
information (infoC) and perform registration (registerC), Train to get a possible train ticket
(infoT) and then either book (bookT) or cancel (cancelT) it, and Plane to get a possible
flight ticket (infoP) and then either book (bookP) or cancel (cancelP) it. The three services
use both basic information types (e.g., place), and structured information types (e.g.,
confinfo). The service conversations have been given in ABPEL but they could also have
been given as LTS or using some process algebra. The end-user request, given as a workflow,
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type confinfo : {n:confname, p:place, from:begdate, to:enddate}
Conf  =  while (true) { pick {
                   onMessage(infoC,(topic)) : reply(infoC,(confinfo)) ; exit
                   onMessage(registerC,(name)) : reply(registerC,(confid)) ; exit
               } } ; exit

type dates : {departure:begdate, return:enddate}
Train = receive(infoT,(dates,place)) ; reply(infoT,(tid,tproposal)) ;
              pick {
                  onMessage(cancelT,(tid)) : exit
                  onMessage(bookT,(tid,name)) : reply(bookT,(eticket)) ; exit
              } ; exit

type dates : {departure:begdate, return:enddate}
Plane = receive(infoP,(dates,place)) ; reply(infoP,(pid,pproposal)) ;
             pick {
                 onMessage(cancelP,(pid)) : exit
                 onMessage(bookP,(pid,name)) : reply(bookP,(eticket)) ; exit
             } ; exit

topic
name

confid
eticket

!

!

!

Figure 1.10: Composition in presence of conversations – inputs

expresses that conference related issues (first getting information, then registering) and
transportation issues (either train or plane ticket reservation) can be done in parallel. Here
we are in presence of horizontal mismatch: if getting conference information is performed
at the same time than transportation booking, the date and place information will not be
available. Further mismatch is due to the different structuring for these informations, e.g.,
place and date information in Conf and Train (resp. Plane). We are also in presence of
vertical mismatch: while services define operations (e.g., bookP in Plane), the requirement
uses capabilities (e.g., plane booking).

Process-1 = 
receive(USER,(topic,name)) ;
invoke(Conf.infoC,(topic),(confinfo)) ;
flow {
    invoke(Conf.registerC,(name),(confid)) ; exit,

    place := confinfo.p ; 
    dates.departure := confinfo.from ;
    dates.return := confinfo.to ;
    invoke(Train.infoT,(dates,place),(tid,tproposal)) ; 
    invoke(Train.bookT,(tid,name),(eticket)) ; exit
}
reply(USER,(confid,eticket) ; exit

Process-2 = 
receive(USER,(topic,name)) ;
invoke(Conf.infoC,(topic),(confinfo)) ;
flow {
    invoke(Conf.registerC,(name),(confid)) ; exit,

    place := confinfo.p ; 
    dates.departure := confinfo.from ;
    dates.return := confinfo.to ;
    invoke(Plane.infoP,(dates,place),(pid,pproposal)) ; 
    invoke(Plane.bookP,(pid,name),(eticket)) ; exit
}
reply(USER,(confid,eticket) ; exit

Figure 1.11: Composition in presence of conversations – outputs

The outputs of an automated composition process should look like Figure 1.11. The two
possible compositions respect the control flows expressed in services and in the requirements,
while ensuring a consistent data flow from the user inputs to the required outputs (using
service outputs also when needed) and solving mismatch out.

The existence of service and composition requirement conversations, together with
horizontal and vertical mismatch require complex composition algorithms. A solution is to
include adaptation features in these algorithms.

Adaptation. Services being developed by different third-parties, may present mismatch
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at the different interface description levels that prevents them from being composed.
Solving such mismatch out is the objective of software adaptation [Seguel et al., 2008], or
adaptation for short. Adaptation consists in building automatically one (orchestration) or
several (distributed orchestration) software pieces called adaptors restoring compatibility
in a non intrusive way (Fig. 1.12, where bullets denote any kind -provided or required- of
interface).
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Figure 1.12: Centralized vs. distributed adaptation

Adaptation differentiates due to its dynamic, non intrusive, and automatic nature,
with techniques such as evolution [Mens and Demeyer, 2008] that assumes that the reused
pieces of code may be modified, or software product lines [Pohl et al., 2005] that assume
that the possible use contexts or variations of a reusable component have been envi-
sioned. Adaptation should also not be confused with adaptive middleware [Agha, 2002],
that provides the technical means to adapt, and do not tackle the semi-automatic or
automatic generation of the adaptor model(s) and code. Finally, adaptation is also some-
times compared in its objective with controller synthesis [Wonham and Ramadge, 1987,
Ramadge and Wonham, 1989]. The main differences are that adaptors can perform mes-
sage renaming, can reorder messages, and support the data associated to messages.

Let us take two simple services: a client C and a server S. Different kinds of behavioral
mismatch may happen:

• Name mismatch (or 1-1 mismatch): an operation provided by S and an operation
required by C have the same semantics but have different names, e.g., two one-way
operations, sendToPrinter and print.

• Unanticipated reception (or 1-0 mismatch): C tries to send a message to S while
it is not used or required by it, e.g., C, in non-connected mode, tries to send a
login/password before each request, while S, in connected-mode, requires it only
once.

• Generalized mismatch (or n-m mismatch): C and S use a different number of
operations/messages for some task, e.g., C wants to add two numbers x and y
invoking in turn operations setX (to set x), setY (to set y) and add (to compute the
sum) while S has a single operation, addition (to provide operands and compute the
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sum at once). In this generalized mismatch, data may have to be aggregated (n-1) or
split (1-n) amongst messages.

• Reordering: C and S have corresponding operations but different orderings, e.g., C
first sets up a file to operate on (setF) and then asks for an operation to be performed
on it (perform), while S has first an operation for setting up the action (setA) and
then an operation for doing the previously set action on a given file (run).

C:Service S:Service

setF(cid,file)

perform(cid,action)

result

setA(action)

run(sid,file)

sid

result

C:Service S:Service

setF(cid,file)

perform(cid,action)

result

setA(action)

run(sid,file)

sid

result

adaptor:Service

Figure 1.13: Mismatch between services (left) and adaptor (right)

These different kinds of mismatch are illustrated on a simple example, Figure 1.13, left,
where the reordering case above is extended with new elements that will demonstrate how
an adaptor works. C sends session identifiers (cid) with its messages to enable message
follow-up. S also requires session identifiers to operate (sid), but these are generated by
S and are different from the ones sent by C. As one can see from the figure, there is no
chance that S can be used to fulfill the needs of C.

Adaptation techniques aim to automatically generate new components called adaptors,
and may rely on an adaptation contract, which is an abstract description of how mismatches
can be worked out. This is usually a morphism relating operations in the signatures
interfaces of the adapted services. All the messages pass through the adaptor, which acts as
an orchestrator and makes the involved services work correctly together by compensating
mismatches. For instance, in the case of the name mismatch presented above, the adaptor
would receive sendToPrinter from C and then would send print to S with the same data.
If an unanticipated reception occurs, the solution is that the adaptor receives all client
connection messages but only transmits the first one. In case of a generalized mismatch
or a reordering issue, the adaptor would first receive from C all the necessary data and
messages, and would interact with S only once all have been received. This is demonstrated
on our example in Figure 1.13, right.

Adaptation is mainly about restoring compatibility, hence avoiding the deadlocks that
are the consequence of mismatch between service protocols. For this, adaptation can be
restrictive, forbidding interactions between services leading to deadlocks, and/or generative,
renaming and reordering messages to avoid deadlocks.

Still, adaptation also fosters services composition in-the-large. Adaptation can be used
in a bottom-up process (Fig. 1.14, left). Given services to be reused (1) and the composition
requirement expressed as an additional service interface (2), adaptation generates, possibly
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Figure 1.14: Using adaptation to empower service composition

with the help of an adaptation contract (3), a centralized adaptor under the form of
an orchestrator (4). Adaptation can also be used when one service fails at run time or
more simply when one wants to replace a sub-service in a composition (Fig. 1.14, right).
Given the interface of the service to be replaced (6) and a set of replacement services (7),
adaptation generates an adaptor between the client(s) of the replaced service and the
replacement services (8).

Testing. The composition and adaptation processes are based on a key element: interfaces.
It is therefore crucial to ensure that a service really does what it publicizes, and, as we have
seen above, if a composition presents mismatch or not. Verification support this. Still, one
has to face two important limits. First, the source code of services is not available (black-box
assumption): only interfaces are published, and they usually describe much less than design
artifacts. The second limit is related to the loosely-coupled and dynamic nature of service
compositions. End-user requirements and services used to realize them may be known
only at deployment or run time. Model-checking and behavioral equivalence techniques
are of great interest during the design process to ensure for example that requirements
correspond to what is really wanted, or that architectures known at design time are correct.
However, with compositions being constructed at deployment time (end-user composition)
and evolving dynamically, model based testing is required.

In active testing, the tester interacts with the implementation under test (IUT) by
sending inputs (messages) and observing outputs (messages too). This method assumes a
kind of controllability of the implementation through Points of Control and Observations
(PCOs). Observing the outputs and comparing them to the expected ones, i.e., those
described by the specification, a verdict can be emitted. A pass verdict establishes the
conformance of the implementation to its specification and a fail verdict yields the opposite.
Passive testing is a software testing method that relies only on observations on the running
IUT. In passive testing the tester does not send messages to the IUT. It only observes the
exchange (sending and reception) of messages between the IUT and its partners, through
Points of Observation (POs). These observations will be compared to the specification in
order to emit a verdict. The term “passive” relates to the fact that the tests do not disturb
the natural operation of the IUT, to the contrary of “active” testing. Passive testing is of
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particular interest since one does not always have the ability to control an IUT, especially
after deployment (Fig. 1.15).
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Figure 1.15: Verification (at design time), active and passive testing

Development as a continuous process. Service composition is today largely a static
affair, as stated in [Papazoglou and van den Heuvel, 2007]. Due to user mobility, net-
work problems, deprecation, etc. the services being used in a composition may be-
come unusable, while other ones may appear. In a context of end-user composition,
that is the automatic composition to fulfill on-demand user needs, these needs may
also evolve. These issues are at the core of new highly dynamic and adaptive sys-
tems [Cheng et al., 2008, Bernardo and Issarny, 2011]. In this context, composition should
be thought as a dynamic and continuous process (Fig. 1.16).
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Figure 1.16: Activities in a continuous composition process

Here, a composition results either from an usual enterprise design (including composition,
verification at design time, and active testing steps before publication) or as an end-user
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request fulfillment. At run time, passive analysis techniques are to be used to check the
correctness of the composition with reference to its dynamic environment. This can be
done using monitoring or testing. In case of a problem, yielding a broken composition,
corrective measures should be taken (using online adaptation and repair) to yield a new
composition.

In my work I propose formal techniques for the composition, adaptation, testing (both
active and passive), and repair of composite systems. As such, I try to enable this new
vision of composition as a continuous process.

1.4 General Principles

For proposing solutions to the software engineering issues presented in the previous section,
I defend and I have followed some interrelated general principles:

• (P1) importance of formal models

• (P2) absence of universal formal model.

• (P3) use of a layered formal model transformation approach.

• (P4) importance of behavioral interfaces.

• (P5) automation of the solutions and tool support.

• (P6) connection with the applicative domain.

(P1) importance of formal models. Formal methods promote the development of
well-founded solutions and their automation. Further, using formal methods for software
engineering issues enables one to reuse not only the related theory, but also to gain
tool-support. The Model Driven Engineering (MDE) paradigm, that has now emerged
in software engineering, is also calling for formal models as demonstrated for example
in [Combemale et al., 2009] where the use of bisimulation theory enables to ensure correct-
ness of model transformations. Still, the use of formal models in MDE and the seamless
integration of activities supported by formal methods in the software development pro-
cess could be further developed, as proposed, e.g., in [Kordon et al., 2008] for verification
activities, switching from MDE to Verification Driven Engineering (VDE).

(P2) absence of universal formal model. It is known that there is no universal
language or model. It would be so expressive that its complexity would prevent developing
any practical solution on it. This complexity would anyway also prevent its use by non
specialists, e.g., non academic software architects or end-users. Rather, specific languages
or models should be used, i.e., defined or reused, for specific applicative domains (here,
composite systems) and specific issues (composition, adaptation, verification).

(P3) use of a layered formal model transformation approach. Having languages
and models being specific for applicative domains and for issues yields not only domain
specific languages (and models) but also issue specific working languages (and models).
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This promotes the development of a layered approach based on different languages and
models, and on model transformations (Fig. 1.17).

ENCODING

Input
Domain Language

DLin

Output
Domain Language

DLout

Input
Domain Model

DMin

Output
Domain Model

DMout

Input
Working Model

WMin

Output
Working Model

WMout

Input
Working Language

WLin

Output
Working Language

WLout

Working Tool
(ad-hoc or reused)

D
O

M
A

IN
 S

PE
CI

FI
C

D
O

M
A

IN
 A

N
D

 IS
SU

E 
SP

EC
IF

IC

Figure 1.17: Layered formal model transformation approach

The left hand part of the figure is relative to the issue and the right hand part to
the solution (if it exists). Taking domain specific inputs (e.g., a service composition
requirement language), one retrieves models for them (e.g., one of those presented in the
next section). This model is transformed using an encoding into another model that is
suitable for an issue of interest (e.g., some planning structure for automated composition).
This model is then dump in a language that is understood by some ad-hoc or reused
tool. Once the tool has run, one proceeds the other way round, reading the tool outputs,
transforming them in some domain specific model (e.g., an orchestration formal model)
and finally in some domain specific language (e.g., the BPEL orchestration language). This
architecture promotes the reuse of domain language from/to domain model transformations
(e.g., (A)BPEL from/to STS) in different issue contexts. Still, this does not prevent that
domain and working models coincide. This architecture shares some of its objectives with
VDE [Kordon et al., 2008], having formal activities at the core of the software development
process, with different tailored models and techniques to be used for different properties
and at different steps of this process.
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(P4) importance of behavioral interfaces. We have seen that components (including
services) could be described at four different interface description languages. Industrial
models and languages by using signature level interfaces and middleware are able to solve
technical issues such as component heterogeneity. However, the behavioral description
level is essential because even if components match from a signature point of view, their
combination can lead to deadlocks or erroneous situations if one is not aware of their
execution flows and does not take them into account while building the systems.

(P5) automation of the solutions and tool support. The manual application of
engineering principles is tedious and error prone. In order to be applicable, the proposed
solutions should go beyond proposing notations, patterns, or structuring rules to be applied
by the software architect. These solutions should be automated, which, further, paves the
way for on-demand composition by end-users and self-corrective systems. Automation
includes the development of prototype tools in order to validate empirically the solutions.

(P6) connection with the applicative domain. New applicative domains such as SOA
promote initially approaches that address domain specific issues in a very abstract and
theoretical way. This is valuable to ease the application of principle P1. However, models
are also there to model and address questions on some reality. Proposing solutions for the
development of composite systems without connecting them to any real-life composition
framework would be somehow stopping half-way. First, software engineering is about
software. One cannot therefore develop a software engineering technique without addressing
the relation with software in some sense, e.g., relating standard requirement languages with
formal models, orchestration models with execution languages, or passing test cases using
SOAP rather than just generating abstract test cases. Second, practical implementations
bring additional issues, e.g., the role of BPEL engines in the execution semantics of an
orchestration, that should be taken into account to assess proposed formal solutions.

1.5 Preliminary on Formal Models

In my work, I have used different formal models. In this section I briefly present them.
This can be skipped in a first reading and serve as a background complement for concepts
and techniques used in the contributions presented in Chapters 2 and 3.

Events. Events are the base building block of a behavioral description. Therefore, the
first step in developing a behavioral formal approach for software engineering is to define
the set of events. As far as software architectures and their service instantiation presented
above are concerned, events fall in one of the following categories:

• interaction events are relative to the interaction between components in a configura-
tion (or composite component). For a message based implementation (Web services),
these events correspond to the sending and the receiving of a message m (input or
output) relative to some operation o in some partnerlink p. Hence, such events are
denoted with Evcomm = Evin ∪ Evout, where events in Evin (inputs) are of the form
p.o.m? and events in Evout (outputs) are of the form p.o.m!. When the relation
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between operations and messages is clear from the context (it can be inferred from
the signature/WSDL file) one can use only p.o? and p.o!, or m? and m!.

• the internal event, τ , is used to denote internal actions of components (e.g., assign-
ment) or of composites (e.g., internal interactions between sub-components not being
observable from outside).

• the termination event,
√

, is used to denote the correct termination of a process and
differentiate from deadlock situations.

• the time passing event, χ, is used to model a discrete version of time (time constraints
of a Web service are generally soft, thus such a discretization of time is a valid
abstraction [Haddad et al., 2004a]).

The set of events used in behavioral formal models may then be defined as

Ev = Evcomm ∪ {τ,√, χ}

Depending on the abstraction level, e.g., mainly in our context whether data associated to
messages are taken into account or not, interaction events may support additional variables
(e.g., for message formal parts in message reception, p.o.m?x, y) or values (e.g., for message
effective values in message sending, p.o.m!”Hello”, 123). For some given formal model
representing a component or a behavioral interface, its set of events, included in Ev, is
also called alphabet.

Trace Sets (TSet). A trace is used to denote a sequence of events, and a trace set is
simply a set of traces. Without entering the battle between linear vs. branching models
and logics [Vardi, 2001], trace sets are used mainly in relation with an implementation, in
which a given sequence of events has happened (hence where branching is not needed), i.e.,
logs.

Definition 1.5.1 (Trace). Given an alphabet A, a trace t is a word on A, i.e., t ∈ A∗.

A trace on A is usually denoted 〈a1, . . . , ai, . . . , an〉, with ai ∈ A for each ai, and 〈〉
denotes the empty trace. One is often interested in prefix-closed trace sets, which are sets
of traces T such that ∀〈a1, . . . , ai, . . . , an−1, an〉 ∈ T 〈a1, . . . , an−1〉 ∈ T . Operator . (resp.
_) denotes event/trace (resp. trace/trace) concatenation.

Labeled Transition Systems (LTSs). State transition models have the benefit to
combine formalism and user-friendliness. This is the reason why that are often used in
industry, with, e.g., UML state diagrams. Labeled Transition System (LTSs) are a simpler
version of these, without expressive structuring mechanisms such a hierarchical or parallel
states. LTSs can be found under different names with small variations, mainly in the
supported events and their structuring (or not) as inputs and outputs, and in the product
definitions. The LTSs we use originate from the seminal work by Arnold [Arnold, 1994].
A major interest of LTSs is tool support. Another interest of LTSs is that they can be
retrieved using the operational semantics of various other formal models, such as process
algebras, event structures, and Petri nets.
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Definition 1.5.2 (Labeled Transition System). A Labeled Transition System is a tuple
(A,S, I, F, T ) where A is an alphabet, S is the set of states, I ∈ S is the initial state, F ⊆ S
are the final states, and T ⊆ S ×A× S is the transition function.

A transition (s, a, s′) in T is also denoted s
a−−→ s′. We define deg(s) = |{s a−−→ s′ ∈ T}|,

for any s in S. A deadlock is a state s in S such that there is no transition s
a−−→ s′ in

T (deg(s) = 0). Final states have the same objective as termination events, i.e., make a
difference between correct termination (being in a final state) and deadlock (being in a
state without outgoing transitions). In presence of termination events in the alphabet, F

is defined as the set of states {s′ ∈ S | ∃s
√
−−−→ s′ ∈ T}.

The main operations used with LTSs are projection, hiding, products, behavioral
reductions, and behavioral equivalences. Let L = (A,S, I, F, T ) be an LTS. Its projection
on an alphabet A′ is the LTS L in which all labels that are not in A′ have been replaced by τ .
Hiding is the complementary operation, i.e., the hiding of an alphabet A′ in L is the LTS L
in which all labels that are in A′ have been replaced by τ . In both cases, the resulting LTS
may then be reduced using a τ reduction (see below). The principle of an LTS product (we
give here a generalized binary version of it inspired by the vector product [Arnold, 1994])
is to retrieve from two LTSs L1 = (A1, S1, I1, F1, T1) and L2 = (A2, S2, I2, F2, T2) an LTS
L = L1 ×X L2 = (A,S, I, F, T ) with X ⊆ Ev × Ev such that:

• A ⊆ A1 ×A2, S ⊆ S1 × S2, I = (I1, I2), F ⊆ F1 × F2,

• (s1, s2)
(a1,a2)−−−−−−→ (s′1, s

′
2) ∈ T iff s1

a1−−−→ s′1 ∈ T1, s2
a2−−−→ s′2 ∈ T2, and (a1, a2) ∈ X.

This product can be easily extended to n LTSs. There are several LTS products defined in
the literature. The more used ones are the synchronous and the asynchronous products.
Let a denote the complementary event of a, which has the property that a = a and that,
depending on the LTS labels, may be defined as a = a (simple events without directions),
p.o.m? = p.o.m! (differentiation between input and output events), or even using more
complex relations (based on synchronous vectors for example). We also have A = {a | a ∈
A}. The synchronous product corresponds to the case where X = (A1 ×A1) ∪ (A2 ×A2).
The asynchronous product corresponds to the case where X = (A1 × ε)× (ε×A2), with ε
denoting a do-nothing event and the LTSs being previously modified to add a transition
s

ε−−→ s′ for each state s ∈ S. One may also define a loose version of the synchronous
product that requires synchronization on common events only.

Synchronous products are particularly interesting to retrieve the semantics of interacting
components and check for deadlock issues and incompatible protocols. Asynchronous
products are particularly interesting to retrieve the semantics of non-interacting components,
for example when one wants to use them with reference to a composition.

Behavioral equivalences (resp. preorders) between LTSs are numerous, see, e.g., some
of them in [van Glabbeek, 2001]. Given some equivalence R, a R-reduction is to retrieve
from an LTS L a smaller LTS L′ (usually the smallest one) such that L′RL. Among the
equivalences and reductions being used on LTS, τ reductions are particularly interesting
since they enable to remove internal events in models while keeping the same behavioral
semantics, up to the equivalence of course.
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Products are used to retrieve global models (composition behavior) from local ones
(sub-component behaviors). Conversely, projections are used to retrieve local models
(component-level requirements) from global ones (composite-level requirements). Hiding
is used to hide in a composition events relative to internal interactions between the sub-
compositions. Using product, hiding, and reduction, one achieves compositionality with
LTSs: a composite component made up of several interacting sub-components can be
reduced to a semantically equivalent simple component.

Process Algebras (PAs). Numerous process algebras (and calculi) have been introduced
in the literature [Baeten, 2005], e.g., simple ones (ACP, CCS, CSP) or extensions with value
passing (LOTOS, µCRL, PSF), time (numerous CCS extensions), mobility (π-calculus),
stochastic information (EMPA, PEPA), etc. With reference to LTSs, their first interest
is their conciseness and their more declarative style: while a||b||c is quite short to denote
the interleaving of the three events a, b, and c, an equivalent LTS would contain them
explicitly, with 8 states and 12 transitions.

A process algebra is given syntactically as a set of atoms (in our context, events) and
structuring operators, and semantically as a set of structural operational semantic rules
and / or calculus axioms. A typical and simple example would be as in Figure 1.18 with
the syntax on the left and semantic rules for ; and for + on the right.

A ::= pl.o.m? (reception of a message)
| pl.o.m! (sending of a message)

P ::=
√

(termination)
| A;P (sequence)
| P1 + P2 (choice)
| P1||P2 (synchronous product)
| P1|||P2 (asynchronous product)

a;P
a−−→P

P1

a1−−−→P ′1

P1+P2

a1−−−→P ′1

P2

a2−−−→P ′2

P1+P2

a2−−−→P ′2

Figure 1.18: A simple process algebra (syntax and part of the semantics)

Given a process algebraic description P , one may work at the semantic level, with
the process algebra operational semantic rules to retrieve an LTS model for P (using the
given rules one can relate the process and the LTS in Fig. 1.3) and then using behavioral
equivalence and model-checking tools. A second interest of process algebras is that an
alternative (if we suppose the calculus is correct and complete) is to work at the syntactic
level, using the calculus axioms and rewriting tools or theorem provers.

Symbolic Transition Systems (STSs). STSs have been introduced to give a symbolic
semantics to value-passing process algebras in [Hennessy and Lin, 1995]. STSs have later
been employed, under different forms and names [Poizat and Royer, 2006], to associate a
behavior with a specification of data types that is used to evaluate guards, actions and
sent values in extended transitions.

Definition 1.5.3 (Symbolic Transition System). Given a set of value extended events Ev,
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a Symbolic Transition System is a tuple (D,V, S, s0, T ) where D is a set of domains, V is
a set of variables with domain in D, S is a non empty set of states, s0 ∈ S is the initial
state, and T is the transition relation, T ⊆ S×TDBool,V ×Ev× seq(Act)×S, with TDBool,V

denoting Boolean terms, and seq(Act) denoting sequences of actions, i.e., assignments
from TD,V (terms) to V (variables).

The term ’symbolic’ is not related to symbolic model-checking. It means supporting the
symbolic treatment of data variables, as opposed to enumeration over the domain of these
variables which is the case when one retrieves an LTS from a data enriched model. STSs
share with transition systems their graphical form. With reference to LTSs, transitions in
STSs may have guards (boolean expressions enabling the transition), reception variables,
and actions. STSs share operation kinds with LTSs, with e.g., symbolic bisimulation,
symbolic products and semantics through symbolic execution.

Symbolic Execution Trees (SET). Symbolic execution [King, 1976] (SE) is a program
analysis technique that has been originally proposed to overcome the state explosion
problem when verifying programs with variables. SE represents values of the variables
using symbolic values instead of concrete data [Khurshid et al., 2003]. Consequently, SE is
able to deal with constraints over symbolic values, and program output values are expressed
as a function over the symbolic input values. The SE of a program is represented by a
symbolic execution tree (SET).

Definition 1.5.4 (Symbolic Execution Tree). Given a program with identified steps S
and operating over a set of variables V, a Symbolic Execution Tree is a tree (N , E) where
N are (symbolic) nodes and E ⊆ N × Ev ×N are the edges. The nodes in N are tuples
ηi = (s, π, σ) where s ∈ S is the program counter, σ is a map V → Vsymb where Vsymb is a
set of (symbolic) variables disjoint from V, and π, the path condition (PC), is a boolean
formula with variables in Vsymb. Events, Ev, are extended with symbolic variables (Vsymb).

The PC in the nodes of an SET accumulate constraints that the symbolic variables must
fulfill in order to follow a given path in the program. SE has been applied to the verification
of interacting/reactive systems, including testing where it can be used to generate symbolic
test cases (STC) corresponding to traces in the SET.

An example is given in Figure 1.19. While the SET has only 10 states and 9 transitions,
a corresponding non symbolic model (LTS) would be unbounded due to the reception of
natural numbers in the first transition. Bounding them to [0..256], would yield an LTS
with 66,565 states and 132,612 transitions.

Labeled Event Systems (LES). Event structures [Boudol and Castellani, 1989] are
important models as far as true concurrency semantics is concerned. Other models for
this indeed exists [Boudol et al., 2008] but event structures are interesting due to relations
that have been studied with process algebras [Boudol and Castellani, 1989] and Petri
nets [Winskel, 1986].

Definition 1.5.5 (Labelled Event Structure). Given a set of labels A, a Labeled Event
Structure is a structure S = (E,≺,#, l) where E is the set of events, ≺⊆ E × E is an
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comp?v3,v4

comp!v5

comp!v5τ

τ τ
τ

√

√

var x,y,z: Nat
comp?x,y ;
if (x>y) 
    { z:=x+1 }
else 
    { z:=y+2 } ; 
comp!z ; 

√

1
{x:v0, y:v1, z:v2}

true

6
{x:v3, y:v4, z:v5}

not(v3>v4) /\ v5=v4+2

2
{x:v3, y:v4, z:v2}

true

3
{x:v3, y:v4, z:v2}

v3>v4

4
{x:v3, y:v4, z:v2}

not(v3>v4)

5
{x:v3, y:v4, z:v5}
v3>v4 /\ v5=v3+1

8
{x:v3, y:v4, z:v5}

not(v3>v4) /\ v5=v4+2

7
{x:v3, y:v4, z:v5}
v3>v4 /\ v5=v3+1

10
{x:v3, y:v4, z:v5}

not(v3>v4) /\ v5=v4+2

9
{x:v3, y:v4, z:v5}
v3>v4 /\ v5=v3+1

Figure 1.19: Symbolic Execution Tree

irreflexive relation, the flow relation, # ⊆ E × E is a symmetric relation, the conflict
relation, and l : E → A is the labeling function.

In an LES, causality (e.g., coming from sequences in component protocols) can be
expressed with ≺, exclusive events (e.g., coming from alternatives in component protocols)
by #, and concurrency (e.g., coming from activities performed in parallel in component
protocols) by two events that are related neither by ≺ nor by #. This makes LESs a very
interesting model when it comes to work with workflow languages.

The semantics of an LES [Boudol and Castellani, 1989] is given through the definition
of configurations (a subset of non conflicting events of E closed by causality) and of
computations (a partially ordered set made up of a configuration and its causality relations).
This semantics of an LES corresponds to an LTS where states are LES and labels are
computations, in the same style as the semantics of a PA was an LTS where states are
processes and labels are events. A comparison between LTS and LES on a simple example
can be made looking at Figures 2.7 (page 49) and 2.9 (page 53).

Petri Nets (PNs). Petri nets [Reisig, 1985] are an expressive formal model for distributed
systems modeling. Due to their graphical notation, they are accepted in industry, further
they can be easily related to standard notations such as UML activity diagrams and BPMN.

Definition 1.5.6 (Petri Net). A Petri net is a tuple (S, T, F ), where S is the finite set of
places, T is the finite set of transitions, and F ⊆ (S × T ) ∪ (T × S) are the arcs.

We can work on Labeled Petri Nets (LPNs) adding an alphabet A and a labeling function
λ : T → A to simple Petri nets. For a transition t in T , we define •t = {s ∈ S | (s, t) ∈ F}
and t• = {s ∈ S | (t, s) ∈ F}. A marking for a Petri net is a function M : S → N assigning
to each place a number of tokens. A marked Petri net is a couple (P,M) where P is the
net and M a marking for this net. Petri nets may have an interleaving (retrieving their
marking graph, an LTS) or a true concurrency (retrieving an LES) semantics. The usual
marking graph semantics is given thanks to the transition firing rule: given a transition t
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and a marking M , t is fireable iff ∀s ∈ •t M(s) > 1. If t is then fired, we get the marking
M ′ where:

• for each s in S, M ′′(s) = M(s)− 1 if s ∈ •t and M ′′(s) = M(s) otherwise.

• for each s in S, M ′(s) = M ′′(s) + 1 if s ∈ t• and M ′(s) = M ′′(s) otherwise.

I refer to [Reisig, 1985] for more details on Petri nets (including weights associated to arcs)
and their marking graph semantics, and to [Winskel, 1986] for their LES semantics.

An important operation on Petri nets, in relation to composite systems, is fusion. This
can operate either on places or on transitions. The former typically represents processes (the
nets) sharing some common resources (the fused places). The later typically represents pro-
cesses (the nets) synchronizing on some interactions (the fused transitions). An important
benefit of Petri net is therefore not only to support a true concurrency semantics, but also
to enable to model easily both data/resource-based interaction and communication-based
interaction between components. To quote Van der Aalst [van der Aalst, 2005], “one of
the big misconceptions about Petri nets versus process algebras is that process algebras are
compositional while Petri nets are not. [...] Petri nets can be used in a compositional way.”.
Petri nets indeed have their own notions of modularity [Kindler and Petrucci, 2009] and
compositionnality [Reisig, 2009], interestingly, closely related to interfaces and fusion.

Graph Planning (GP). Given an initial state of a propositional world, a goal state,
and a set of actions operating on this world, planning [Ghallab et al., 2004] addresses the
retrieval of action sequences called plans enabling to reach the goal from the initial state.

Definition 1.5.7 (Planning). Given a finite set L = {p1, . . . , pn} of proposition symbols,
a planning problem is a triple P = ((S,A, γ), s0, g), where: S ⊆ 2L is a set of states, A is
a set of actions, an action a being a tuple (pre, effects−, effects+) ⊆ 2L × 2L × 2L where
pre, effects−, and effects+ denote respectively the preconditions, the negative effects
(effects− ⊆ pre), and the positive effects of a, γ is a state transition function such that,
for any state s where pre(a) ⊆ s, γ(s, a) = (s\effects−(a)) ∪ effects+(a), and s0 ∈ S
and g ⊆ L are respectively the initial state and the goal.

A plan π is a sequence of sets of actions π1;π2; . . . ;πn, in which each πi (i = 1, . . . , n)
is a set of paralleled actions (denoted with ||). π1 is applicable to s0. πi is applicable to γ
(si−2, πi−1) when i = 2, . . . , n. g ⊆ γ(. . . (γ(γ(s0, π1), π2) . . . πn). Different algorithms have
been proposed to solve planning problems and get plans from them [Ghallab et al., 2004].
A particularly interesting approach is based on graph planning [Blum and Furst, 1997]
that builds the state space in polynomial time.

Definition 1.5.8 (Planning Graph). A planning graph G is a directed acyclic leveled
graph in which levels alternate proposition layers Pi and action layers Ai. The initial
proposition layer P0 contains the initial propositions (s0). An action a is put in layer Ai
iff pre(a) ⊆ Pi−1 and then effects+(a) ⊆ Pi.

Exclusion relations [Blum and Furst, 1997] are used in planning graphs to support
negative effects. Non-exclusive actions added into one layer are independent in the sense
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that they could possibly be executed parallelly. A planning graph actually explores multiple
search paths at the same time when expanding. The construction of the planning graph
stops at a layer Ak iff the goal is reached (g ⊆ Ak) or in case of a fixpoint (Ak = Ak−1). In
the former case there exists at least a solution, while in the later there is not. Plans can
be obtained from a planning graph using backward search from the goal.

1.6 Summary of the Contributions

In this document I present my recent work in providing solutions to the development
of composite systems. Work I did relative to in-the-small development, addressing for
example the integration of formal data type descriptions in behavioral languages [A4]3 is not
presented here. I made the choice to focus on in-the-large development since I believe that
this is the more important part in the development of composite systems. Moreover, I will
not present the work I did on in-the-large modeling and verification [A3]. Rather, I chose to
address support for new activities that have emerged from the conjunction of the composition
and reuse principles, and this both in top-down and bottom-up development processes
(Fig. 1.20): composition and adaptation (Chap. 2) on the one hand, and composition
testing, realizability checking, and composition repair (Chap. 3) on the other hand.

    execution

in the large adaptation

composition repair

testingrealizability checking

chapter 2 chapter 3

deploymentdevelopment

Figure 1.20: Composite systems activities presented in the manuscript

I will now give a summary of my contributions to these activities. These contributions
will be detailed in Sections 2.1 and 3.1, together with a corresponding state of the art.

Semi-Automatic Adaptation. Reusable software entities are subject to mismatch
preventing their correct composition. I have studied solutions to this issue through
semi-automatic and automatic software adaptation approaches. I have first addressed
semi-automatic component adaptation, Section 2.2. Based on adaptation contracts
and component behavioral interfaces, a behavioral adaptor is constructed. The result of
this work is a fully tool-supported centralized adaptation technique that combines the
benefits of existing related work, being both restrictive and generative, and that apply
system-wide, on any number of composed components. In order to enhance the efficiency
of the adaptation process, incremental adaptation and a new kind of behavioral reduction
have been studied too. Finally, in order to follow principles P5 and P6, application to a

3References of the form [Ax], [IPx] are personal ones, given in Chap. 5. Other ones,
e.g., [Allen and Garlan, 1997] are given in the bibliographic reference chapter.
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real component model (Windows Workflow Framework) has been done. More recently,
I have addressed semi-automatic orchestration adaptation, Section 2.3. This is an
end-to-end (again, as stressed out by principles P5 and P6) application of adaptation to
services with transformations from/to BPEL. Other contributions in this work include the
direct support for data being exchanged and efficiency of the adaptation process through
an on-the-fly technique for behavioral restriction and adaptor model reduction.

Automatic Adaptation. The work presented above is based on signature and behavioral
interface descriptions only. Thus, it requires the existence of adaptation contracts in order
to support solving out signature mismatch. In order to remove this constraint, I have
studied automatic distributed semantic adaptation, Section 2.4. Using semantic
annotations in service signatures, adaptation is performed at the information (data) level
rather than at the message level. The bottleneck of centralized adaptation is avoided reusing
local controller and projection techniques, yielding sets of local distributed adaptors that
can be implemented as a set of distributed orchestrators, i.e., as an adaptive choreography.
More recently, this work has been extended using true concurrency models (LES) instead
of interleaving ones (LTS). As a result, the transformation between global (centralized
adaptor) and local (local adaptor) models is much simplified.

Composition. Adaptation and automatic composition are much related. Authors had
shown that adaptation could go further than avoiding deadlocks and could be used to ensure
system-wide properties. Still a remaining issue in composition is abstraction mismatch
between composition requirements (activities or capabilities) and service description levels
(operations). I therefore proposed techniques for automatic composition of semantic
services, Section 2.5. With reference to existing work, the main contribution is to integrate
adaptive features in the composition process, supporting conversations both for composition
requirements and for service descriptions, and solving out both horizontal and vertical
mismatch.

Testing. Abstraction used in the requirement, composition, and adaptation processes,
together with the important role played by composition execution engines, make it important
to test service compositions, whether they have been achieved manually, semi-automatically,
or fully-automatically. In this direction, I have addressed conformance testing of
service orchestrations, Section 3.2. The main contributions of this work are an end-to-
end and fully automated online testing technique and a symbolic approach to avoid state
space explosion in formal models due to the rich XML-based data used in Web service
interfaces. Going further with composition in-the-large, conformance testing of service
choreographies is addressed in Section 3.3. Most works address the testing of a privileged
partner link in service orchestrations. Few works support the testing of choreographies. The
first contribution is an end-to-end and fully automated testing technique for choreographies.
With reference to related work it does not suppose access to the code since the approach is
black-box based. Further, I propose to use passive testing in order not to be intrusive with
the choreography under test.

Realizability checking. The two important issues with choreographies are conformance
and realizability. In complement to my work on conformance testing presented above, I
have proposed a technique for choreography realizability checking, Section 3.4. This
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Table 1.2: Contributions - lecture grid

issue DLin DM in WM DMout DLout

adaptation and composition

2.2 component adaptation WWF
LTS LTS LTS

WWF
LTS PN LTS

2.3 orchestration adaptation WSDL+BPEL STS PA STS

BPEL2.4 choreography adaptation
SAWSDL+BPEL LTS LTS LTS
WF LES PN LES

2.5 orchestration composition WF GP GP GP
verification and repair

3.2 orchestration testing ABPEL STS SET STC SOAP
3.3 choreography testing Chor+SOAP logs TSet TSet n/a n/a
3.4 choreography checking BPMN 2.0 WF PA, LTS n/a n/a
3.5 orchestration repair WSDL+OWL(+GP) GP GP GP BPEL

problem has been studied for interconnected interface models (MSC) and, more recently,
for interaction interface models (UML collaboration diagrams). The main contribution is
to study realizability on a more expressive choreography specification language, the new
choreography diagrams introduced in BPMN 2.0.

Repair. Service compositions get broken as a consequence of users mobility, requirement
change, and unavailable sub-services. As an alternative to solutions based on replacement
or complete recomposition, I have proposed techniques for service orchestration repair,
Section 3.5. Experiments on big size benchmarks constructed with a service composi-
tion challenge generating tool have demonstrated that repair gives solutions to broken
compositions of equivalent quality but in better computation time.

These works propose a complementary set of solutions for the development of composite
systems, as demonstrated in Figure 1.16 and Table 1.2. In the next two chapters, I will detail
related work and my contributions (Sect. 2.1 and 3.1) together with the more important
elements in the proposed solutions (Sect. 2.2–2.5 and 3.2–3.5). There are still interesting
research directions to extend these solutions. This, together with other perspectives of my
work is discussed in Chapter 4.
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2
Adaptation and Composition

2.1 State of the Art and Contributions

State of the Art and Contributions on Adaptation

The foundation for software adaptation has been set up in [Yellin and Strom, 1997].
Adaptation proposals initially focused on solving behavioral mismatches between ab-
stract descriptions of software components. With the advent of services, these adap-
tation approaches have been extended and new ones have been developed to support
this particular architecture. Several surveys have been published on software adap-
tation [Becker et al., 2006, Canal et al., 2006, Seguel et al., 2008, Inverardi et al., 2011].
One way to classify adaptation approaches is into restrictive, generative, and ad-hoc
approaches [Canal et al., 2006].

Restrictive approaches, e.g., [Reussner, 2003, Inverardi and Tivoli, 2003], solve mis-
match out by cutting off the behavior that may lead to it, thus restricting the functionality
of the involved components. These approaches can be related to controller synthesis. They
are fully automatic and, often, tool-supported. However, they do not tackle advanced
adaptation scenarios where message renaming is required and may have to change over
time, or where reordering is needed. Generative approaches, e.g., [Yellin and Strom, 1997,
Bracciali et al., 2005, Brogi et al., 2006a, Brogi and Popescu, 2006], try to accommodate
the protocols by generating adaptors that act as mediators, renaming, remembering
and reordering messages and data when necessary. These approaches are able to solve
more mismatch than restrictive approaches. However, for this they usually require an
abstract specification of how mismatch can be solved, under the form of an adaptation
contract, and are in this case only semi-automatic since a human intervention is required
before the adaptor construction takes place. Generative approaches may also suffer from
the computational complexity of generating adaptors due to reordering. A last cate-
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gory of adaptation approaches are ad-hoc approaches, e.g., [Schmidt and Reussner, 2002,
Benatallah et al., 2005a, Dumas et al., 2006]. They address adaptation through solutions
for specific mismatch with, e.g., adaptation patterns or adaptation operator algebras.

An important issue in adaptation is to avoid the centralized adaptor bottleneck.
A technique for the distribution of a centralized orchestrator into different topologies
of decentralized orchestrators is presented in [Gowri Nanda et al., 2004] and extended
in [Chafle et al., 2005] to support data flow constraints and a filtering mechanism to select
the topologies that satisfy the constraints. These techniques still, do not address adapta-
tion. In [Inverardi et al., 2005, Autili et al., 2008], the authors extend their earlier works
on component adaptation to support the distribution of centralized adaptors introducing
the concept of last chance state and using messages to ensure distribution correctness.

Over the years, adaptation approaches have greatly enhanced as far as expressiveness,
mismatch support, automation, and relation to implementation languages is concerned. The
SYNTHESIS framework [Inverardi and Tivoli, 2003, Autili et al., 2007, Autili et al., 2008,
Tivoli and Inverardi, 2008] is a restrictive adaptation approach that goes beyond pure
deadlock-freedom adaptation and takes into account additional adaptation inputs such
as high-level MSC. In [Inverardi and Tivoli, 2003], it has been applied to COM/DCOM
components, and application to services is tackled in [Inverardi and Tivoli, 2007] with
orchestrator/sub-services correspondences that make it support a form of generative adapta-
tion suitable to automatic composition. Another example is the [van der Aalst et al., 2009]
approach that supports both restrictive and generative adaptation, ensuring weak termi-
nation (absence of deadlocks and absence of livelocks). Building on an important tool
support based on Open Nets (a kind of Petri nets) and going beyond adaptation, this
approach has been applied to services in [Gierds et al., 2010]. An adaptive composition
technique based on the structural analysis of Petri nets (searching for siphons) is presented
in [Xiong et al., 2010]. Mismatch can be avoided by adding new operations in the services
when needed to control them, which yields an intrusive adaptation approach. Implemen-
tation in BPEL is also tackled in [Xiong et al., 2010]. Finally, a recent development in
adaptation has addressed the construction of minimal adaptors [Seguel et al., 2010], i.e.,
adaptors that are used only for a part of the component interactions.

The combination of behavioral and signature adaptation is receiving a growing interest,
see, e.g., [Motahari-Nezhad et al., 2007, Brogi and Popescu, 2007, Cavallaro et al., 2009,
Motahari-Nezhad et al., 2010, Shan et al., 2010, Inverardi et al., 2011]. This is achieved
mainly through the use of ontologies and semantic annotations in service signatures. These
combined approaches often focus on specific usages such as service/client matching or
service replacement, hence address binary adaptation. Few adaptation approaches ad-
dress explicitly n-ary behavioral adaptation, i.e., the construction of adaptors for any
number of components or services. This is directly supported in the SYNTHESIS frame-
work. In other purely behavioral adaptation approaches, e.g., [van der Aalst et al., 2009,
Gierds et al., 2010, Seguel et al., 2010], n-ary adaptation can be supported by adapting be-
tween a client and a system resulting from the product of all other components or services to
adapt. As far as approaches combining behavioral and signature adaptation are concerned,
techniques such as ontology integration could help in generalizing binary solutions for n-ary
adaptation, as done, e.g., in [Brogi et al., 2006b] for composition. Since the approach pre-
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sented in [Inverardi et al., 2011] natively includes a form of behavioral ontology morphism,
its extension to n-ary adaptation should be easier. Some authors have addressed adaptation
with rich algebraic semantic descriptions [Morel and Alexander, 2004, Hemer, 2005]. The
combination between these and behavioral adaptation is still to come.

A theoretical framework for adaptation with a process algebraic grounding is emerg-
ing [Padovani, 2009, Bravetti et al., 2011]. This can be related to behavioral types, con-
tracts, or sessions [Vallecillo et al., 2003], a concise and expressive way to specify behavioral
interfaces. They are of particular interest for discovery and selection as an alternative to
LTS/graph-based techniques such as, e.g., [Grigori et al., 2008]. Their use for adaptation,
introduced in [Brogi et al., 2004], is promising for the incorporation of an adaptability
notion in the discovery and selection processes, in complement to approaches based on
compatibility measures [Ouederni et al., 2011].

Adaptive middleware is not a new topic [Agha, 2002]. It targets languages and
infrastructures for adaptation, but not the generation of adaptor models and code.
Still, one notes a convergence between software adaptation approaches getting more
dynamic [Pelliccione et al., 2008, Cámara et al., 2008, Inverardi et al., 2011], with the re-
lated runtime issues, and recent development integrating (yet, simple) adaptation features
in execution or monitoring tools [Wang et al., 2008, Moser et al., 2008, Taher et al., 2009].
The combination of expressive adaptation approaches with such support middleware is a
promising direction for composition as a continuous process as presented in Chapter 1.

Contributions. In [IP16, A5] (Sect. 2.2) I have proposed techniques for the semi-automatic
adaptation of software components that are both restrictive and generative. These tech-
niques reused elements of two existing adaptation approaches, namely the removal of
paths to deadlocks proposed in the [Inverardi and Tivoli, 2003] n-ary restrictive adapta-
tion approach and the signature correspondences proposed in the [Bracciali et al., 2005]
binary generative adaptation approach. I extended these binary correspondences into
n-ary adaptation vectors to support n-ary generative adaptation. Further, using behavioral
descriptions labeled with these vectors, it was possible to support complex adaptation
policies, a simple form of adapted system properties, and, as opposed to adaptation where
the contract is static, a first proposal for contextual adaptation contract. This last idea will
be developed later on by other authors in [Cubo et al., 2007a]. I proposed two underlying
algorithms. The first one is based on vector products. It is comparable to the adaptor
generation approach proposed in [Inverardi and Tivoli, 2003], but for the support of name
mismatch and evolving component signature morphisms using vectors. The first algorithm
is more efficient than the second one, but it does not support generative adaptation due
to its memory-less model. The second algorithm is based on an encoding into a formal
model supporting message buffering, namely Petri nets. It is more complex but supports
generative adaptation, including message storing and reordering. This second algorithm
is acknowledged to be an inspiration for an extension of the SYNTHESIS framework to
timed adaptation [Tivoli et al., 2007]. Following Principle P5 (see Sec. 1.4), the techniques
I proposed were fully tool supported. Principle P6 called for experimentation on a real
applicative domain. This has been done in [IP20, IP22] in relation to the Windows Work-
flow Foundation framework and with the semi-automatic implementation of adaptors in
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.NET 3.0. My techniques were based on a centralized global adaptor for a closed system.
I studied solutions to this with the incremental adaptation of open systems [IP17,IP18],
still observing that in the general case open systems built incrementally require an overall
adaptor to achieve deadlock freedom. Further, in order to reduce the size of adaptor models
before implementation, I have proposed a new form of behavioral reduction for composite
systems LTS models [IP19] based on the concept of equivalent transactions between stable
(initial and final) states of a composition.

In a later work [IP21, IP25, A6] (Sect. 2.3) I have proposed an end-to-end adaptation
approach for service compositions. It extended my previous work with the direct support
for data in behavioral interfaces (using STS and value passing process algebras instead
of LTS) and in adaptation contracts. Further, transformations from standard service
description languages (WSDL, ABPEL) to STS service models, and from STS adaptor
models to the standard service orchestration language (BPEL) have been defined (while
omitted in most related work). Restrictive approaches proceed by removing paths leading
to deadlocks (pruning). This can be a drawback when used in combination with generative
approaches that generate a big state space due to the possible reordering of messages,
even more if behavioral reduction is applied to adaptor models to reduce internal actions
before implementation. To address this issue, a last contribution of this work is to perform
pruning and reduction on-the-fly, i.e., avoiding the complete construction of the global
state space from the reused service models. This service adaptation approach is a core
element of the ITACA adaptation and composition platform [Cámara et al., 2009].

All these works on adaptation required an adaptation contract to be given in order
to support generative adaptation, hence were semi-automatic. In order to remove this
constraint and achieve fully-automatic restrictive and generative adaptation, I studied
in [IP23] (Sect. 2.4) the use of semantic annotations associated to data in the messages
exchanged between services. In this work, adaptation is not performed at the operation
level but rather at the information level, trying to exchange data between services in
order to achieve partner satisfaction. As such, it is somehow a collaborative vision of
adaptation, while the previous work was more concerned about cooperation. This work also
yields distributed adaptors as opposed to a centralized one, following the steps introduced
in [Inverardi et al., 2005] for stepwise distributed adaptor computation. Still, [IP23] builds
on the extension of earlier work for service client synthesis [Haddad et al., 2004b], and
then develops its own algorithms for client product and product projection. It should be
noted that replacement algorithms for client synthesis [Inverardi and Tivoli, 2003] or for
orchestrator/adaptor distribution [Gowri Nanda et al., 2004, Inverardi et al., 2005] could
be reused through rephrasing in a semantic data centric framework. At the core of
the [IP23] approach is the computation of a global adaptor model with implicit parallelism,
hence resulting on an important interleaving and complexity of local adaptor retrieval
and implementation. I recently studied in [S2] the use of a true concurrency model (LES)
instead of LTS. As a result the transformation from global to local adaptors and the
implementation of adaptors is much facilitated thanks to explicit concurrency.
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State of the Art and Contributions on Automated Composition

Automated service composition fosters the rapid design, implementation and deployment
of distributed applications. It is also a cornerstone towards the realization of on-demand
composition from end-user requirements. Automated service composition has been stud-
ied under various assumptions as can be seen from recent surveys [Rao and Su, 2004,
Dustdar and Schreiner, 2005, Marconi and Pistore, 2009].

Amongst the numerous techniques used for composition, planning, is increasingly
applied in SOC [Peer, 2005, Chan et al., 2007] as it supports automatic service compo-
sition from underspecified requirements, e.g., the data one requires and the data one
agrees to give for this, or a set of capabilities one is searching for. Such requirements
do not refer to service operations or to the order in which they should be called, which
would be ill-suited to end-user composition. While both data input/output and ca-
pability requirements should be supported to ensure composition is correct wrt. the
user needs, only [Bertoli et al., 2010, Ben Mokhtar et al., 2007] do. Most of the composi-
tion approaches indeed support only data [Klush et al., 2005, Constantinescu et al., 2006,
Liu et al., 2007, Brogi and Popescu, 2005, Benigni et al., 2007, Zheng and Yan, 2008] or
only capabilities [Berardi et al., 2004].

We have seen in Chapter 1 that composition requires adaptive features to solve hor-
izontal and vertical mismatch. The former is supported in [Constantinescu et al., 2006,
Liu et al., 2007, Ben Mokhtar et al., 2007, Benigni et al., 2007] using semantics associated
to data. The later is supported in [Klush et al., 2005] due to its hierarchical planning
inheritance. Few approaches support expressive models in which protocols can be described
over capabilities, either for the composition requirement only [Berardi et al., 2004] or for
both composition requirement and services [Bertoli et al., 2010, Ben Mokhtar et al., 2007].
[Klush et al., 2005, Constantinescu et al., 2006, Liu et al., 2007, Brogi and Popescu, 2005,
Benigni et al., 2007] only support conversations over operations (for a given capability).

To be comprehensive, one should cite software adaptation works that are able to generate
adaptors taking into account adaptation contracts e.g., [A5] [van der Aalst et al., 2009],
or high-level requirements and properties [Inverardi and Tivoli, 2003]. These works have
been extended to services, in [A6], [Gierds et al., 2010], and [Inverardi and Tivoli, 2007],
respectively. The main drawback of these works as far as composition is concerned is
that they require that both requirements and service conversations are described at the
operation level and rely on explicit operation correspondences. A fully automatic adaptive
composition approach is proposed in [Xiong et al., 2010], but it requires to change the
signature interface of the reused services, which is not suitable for black-box services.

Contributions. In my work [IP26, IP30] (Sect. 2.5), I use graph planning techniques to
achieve composition from under-specified requirements. I propose an expressive framework
with support for both data and capability based composition. While in [IP26] conversations
were only supported in composition requirements, in [IP30] both requirements and service
behavioral interfaces are given in terms of workflows. Using semantic annotations for
data and capabilities, I introduce the necessary adaptation features in order to solve
automatically both horizontal and vertical mismatch. Following my general principles
(Sec. 1.4), the comprehensive encoding of the composition problem into a planning problem
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enables to connect in [IP30] to efficient available planners rather than relying partly as in
[IP26] on ad-hoc composition algorithms. To the difference of other composition approaches,
including the ones based on adaptation or on planning, the use of graph planning brings
benefits in case of broken compositions, i.e., enabling repair (Sec. 3.5) instead of requiring
full recomposition.

2.2 Centralized Adaptation of Software Components

[IP16,IP17,IP18,IP19,IP20,IP22,A5] – work done in the context of collaborations with
colleagues from L’Aquila University, Italy, Málaga University, Spain, and Dauphine Uni-
versity.
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Figure 2.1: Centralized adaptation of software components – overview

This first adaptation approach (Fig. 2.1) takes as input the behavioral interfaces of
components to be adapted and an adaptation contract, that is an abstract description of
the constraints which must be respected to make the involved components work together.
Given these two elements, an adaptor protocol is generated in an automatic way. The
adaptation process begins with two (or more) components that are not able —as they
are— to interact successfully (i.e., ending in correct termination states). To compensate
such mismatch, we propose to use synchronous vectors as adaptation contract language
to make explicit the interactions between components, possibly on different message
names. Our notation also allows the specification of ordering constraints on interactions,
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which enables one to describe in an abstract way more complex adaptation scenarios. In
order to generate adaptor protocols for such contracts, we propose two algorithms that
automate the adaptation process. The first one is based on synchronous products, and the
second one is based on Petri net encodings. Compared to the former, the latter induces a
higher computational complexity, but is able to reorder messages when necessary, and then
ensures a correct interaction when several components have the messages exchanged in their
protocols which are not ordered correspondingly. Reordering is worked out desynchronizing
the message emission by one component and the message reception in another one. When
required, emitted messages are temporarily memorized until they are used for effective
interaction. This is why a formalism capable of representing memory, such as Petri nets, is
required. Our approach for software adaptation has been implemented in a tool, called
Adaptor, and a Web service version of it, WS-Adaptor. Adaptor interacts with two other
external tools, TINA (Petri net analysis) and CADP (mismatch computation and behavioral
reductions).

Models

Component behavioral interfaces are represented by means of LTS where the alphabet
corresponds to the input and output of messages (denoted with m? and m!). For the
adaptation contract notation, we rely on synchronous vectors [Arnold, 1994], which denote
communication between several components, where each event appearing in one vector
is executed by one component and the overall result corresponds to a synchronization
between all the involved components. A vector may involve any number of components and
does not require interactions to occur on the same names of events. Vectors can describe
expressive communication patterns, which is especially useful to express n-ary interactions.

Definition 2.2.1 (Vector). A synchronous vector (or vector for short) for a set of com-
ponents Ci = (Ai, Si, Ii, Fi, Ti), i ∈ {1, . . . , n}, is a tuple 〈e1, . . . , en〉 with ei ∈ Ai ∪ {ε}, ε
meaning that a component does not participate in a synchronization.

A vector can be implicitly given (no mandatory order as in a tuple, no ε) as an Id indexed
set of alphabet elements {i : ei}, i ∈ Id with ei ∈ Ai. The translation from one to the other
is trivial. Vectors express correspondences between messages, like bindings between ports,
or connectors, in architectural descriptions. Yet, vectors alone are not sufficient to perform
adaptation as one must take into account also the context in which messages are exchanged,
i.e., the component protocols. Suppose we have a vector 〈c1 : a!; c2 : b?〉. Directly sending
in an adaptor the message b to c2 when message a is received from c1 may lead the system
to a deadlock state if this interaction is incorrect. This is why more complex adaptation
algorithms, such as the ones we define here are required. Moreover, vectors are not sufficient
to support more advanced adaptation scenarios such as contextual rules, choice between
vectors or, more generally, ordering (e.g., when one message in some component corresponds
to several in another component, which requires to apply several vectors). The ordering in
which vectors have to be applied can be specified using different notations such as regular
expressions, LTSs, or (Hierarchical) Message Sequence Charts. Due to their readability and
user-friendliness, we chose to specify adaptation contracts using vector LTSs, that is, LTSs
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whose labels are vectors. In addition, vector LTSs facilitate the development of adaptation
algorithms since they provide an explicit description of the contract behaviors set of states,
which makes their traversal easier. Other notations, such as the ones mentioned above,
can be used to specify the adaptation contract, provided that they can be translated
into vector LTSs. To this purpose, one can rely on existing behavioral model synthesis
techniques such as those presented in [Hopcroft and Ullman, 1979] for regular expressions,
or in [Uchitel et al., 2003] for Message Sequence Charts.

Definition 2.2.2 (Vector LTS). A vector LTS for a set of vectors V is an LTS (V, S, I, F, T )
where labels are vectors.

Definition 2.2.3 (Adaptation Contract). An adaptation contract for a set of components
Ci = (Ai, Si, Ii, Fi, Ti), i ∈ {1, .., n}, is a couple (V,L) where V is a set of vectors for
components Ci, and L is a vector LTS for V .

There exists numerous definitions of compatibility and, as a consequence, of mismatch
between protocols, but deadlock is the most commonly accepted notion. Still, the deadlock
notion should take into account the specific role of final states. A system is blocked when
it cannot evolve and when at least one of the components is not in one of its final states.

Definition 2.2.4 (Deadlock State). Let C = (A,S, I, F, T ) be an LTS. A state s in S is
a deadlock state, denoted dead(s), iff it is not in F and it has no outgoing transitions.

Definition 2.2.5 (Behavioural Mismatch). An LTS C = (A,S, I, F, T ) presents a behav-
ioral mismatch if there is a state s in S such that dead(s).

To check if a system composed of several components presents mismatch, its synchronous
product with m? = m! is computed and then Definition 2.2.5 is used. An adaptor is given
by an LTS which, put into a mismatching system yields a non-mismatching one. All the
exchanged messages will pass through the adaptor, which can be seen as a coordinator
for the components to be adapted. In the sequel, we present the principles of our two
algorithms for the generation of adaptor protocols.

Synchronous Product Approach

We rely on an extension of the synchronous product that takes into account the corre-
spondences of events described in the vectors, but also their ordering in the vector LTS.
Consequently, the vector LTS is used as a guide to build the resulting product.

Definition 2.2.6 (Synchronous Vector Product (with vector LTS)). The synchronous
vector product (with vector LTS) of n LTS Ci = (Ai, Si, Ii, Fi, Ti), i ∈ {1, .., n} with a
vector LTS L = (AL, SL, IL, FL, TL), is the LTS ΠL((C1, . . . , Cn), L) = (A,S, I, F, T ) such
that:

• A = AL × A1 ∪ {ε} × . . . × An ∪ {ε}, S = SL × S1 × . . . × Sn, I = (IL, I1, . . . , In),
F = FL × F1 × . . .× Fn, and
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• T contains a transition ((sL, s1, . . . , sn), 〈aL, a1, . . . , an〉 , (s′L, s
′
1, . . . , s

′
n)) iff there is

a state (sL, s1, . . . , sn) in S, there is a transition (sL, 〈l1, . . . , ln〉 , s′L) in TL and for
every i in {1, . . . , n}:

– if li = ε then s′i = si and ai = ε,

– otherwise there is a transition (si, ai, s
′
i) with ai = li in Ti.

To generate an adaptor protocol from a synchronous vector product we have to
discard the first element of the product components to keep only the elements corre-
sponding to the component exchanges. More formally, it means that from an LTS PL =
ΠL((C1, . . . , Cn), L) = (A,S, I, F, T ) we compute the LTS P = proj (PL) = (A′, S′, I ′, F ′, T ′)
such that X ′ = {cdr(x) | x ∈ X} for any X in {A,S, I, F}, and T ′ = {(cdr(s),cdr(l),cdr(s′))
| (s, l, s′) ∈ T} with cdr((x0, x1, . . . , xn)) = (x1, . . . , xn). To ensure deadlock freedom we
then apply a technique for restrictive adaptation proposed in [Inverardi and Tivoli, 2003],
pruning paths to deadlocks (Def 2.2.7).

Definition 2.2.7 (Path to deadlock). Given an LTS C = (A,S, F, I, T ), a path to deadlock

is a sequence of transitions s0
l0−→ s1

l1−→ . . .
ln−1−→ sn such that deg(s0) > 1 ∧ deg(sn) =

0 ∧ ∀i ∈ {1, . . . , n− 1} deg(si) = 1.

Non controllable transitions in components can be supported in adaptor pruning using
controller synthesis steps [Autili et al., 2008]. In our case, if the first transition in a path
to deadlock is not controllable, we backtrack to remove controllable transitions related to
the same component. We then mirror (m?↔ m!) transitions to ensure that the adaptor
and the components can perfectly communicate. Finally, we replace each transition labeled
by a tuple of synchronized messages by all possible interleavings of these messages, starting
by reception ones. This is essential when vectors involve more than two events in a
communication (e.g., in case of broadcast or multicast communication). Interleavings make
the adaptor support non-determinism wrt. the orderings in which events will occur, hence
accept any possible one.

Petri Net Approach

Our goal is now also to address behavioral mismatch which requires reordering. This occurs
when exchanged messages present non-compatible orderings in the components’ protocols.
To support this kind of mismatch, the adaptation process may try to accommodate protocols
by reordering events in-between the components. The behavioral adaptation proposal
presented before may yield an empty adaptor in presence of such mismatch because it
induces application of one vector after the other, and therefore prevents the application of
several vectors at the same time that is necessary to make reordering effective. To this
purpose, we present a second approach which complements the first one.

Messages received by the adaptor are seen as resources which are memorized until they
need to be sent (i.e., until they may be received by some component to make it evolve).
This can be achieved first thanks to an encoding of the component protocols and of the
adaptation contract into a formalism that supports a memory and a resource-based vision of
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adaptation, as follows: (i) reception of messages (by the adaptor) corresponds to a resource
creation, (ii) emission of messages (by the adaptor) is possible provided some resource is
available and corresponds to resource consumption, and finally, (iii) vectors correspond to
resource transfer. Petri nets are such a formalism, which further benefits from good tool
support. Moreover, the marking graph of such a Petri net encoding represents all possible
resource-based evolutions of the adaptor (message reception, emission and transfer).

Our second algorithm takes as input a set of component LTSs Ci and an adaptation
contract, and generates first the corresponding Petri net encoding.
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Figure 2.2: Encoding patterns for component protocols (and related semantics)

As regards component interface encoding (Fig. 2.2), every event emission or reception
in a component is translated into a Petri net transition holding the same name as the event
but the reversed direction. This transition is connected to specific places that are used to
store, using tokens, messages corresponding to the events. For each event emission c :a!
in a component c interface there is a transition for reception in the Petri net (c :a?) and
this transition has an output arc to the place where the corresponding message is stored
(??c :a). Conversely, for each event reception c :a? in a component c interface there is a
transition for emission in the Petri net (c :a!) and this transition has an input arc from the
place where the corresponding message has been stored (!!c :a). The control flow between
events in component interfaces is expressed in the Petri net by control places (c : s and
c : s′) and related arcs connecting the different Petri net transitions. Moreover, tokens
are placed in the control places encoding the initial states of the LTS interfaces, and their
evolution will simulate the execution of the entire system.

tau

??c1:a

CL:s’LCL:sL
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< c1:a!, c2:b?, c3:c? >

Figure 2.3: Encoding pattern for adaptation contracts (and related semantics)

As far as the contract encoding is concerned, every synchronous vector is encoded using
a τ transition (Fig. 2.3) as it represents an internal action of the adaptor. Arcs are added
to connect these τ transitions in order to enforce their application ordering in the vector
LTS. Message transfer is enabled using input/output arcs that connect a τ transition to
the places related to the component events involved in the corresponding vector.
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To generate the adaptor protocol, we fuse all Petri net encodings (n for the components
and one for the contract) on common places (the ??c : a and !!c : a ones) and compute
the marking graph of the fused Petri net. It contains all the possible evolutions of the
adaptor wrt. the component LTSs it is in charge of. As for the previous approach, we
remove paths to deadlocks. Finally, we apply a τ branching reduction to remove internal
steps that are used in the encoding and adaptor generation and that are meaningless for
adaptor implementation.

2.3 Centralized Adaptation of Web Services

[IP21,IP25,A6] – work done in the context of collaborations with colleagues from Málaga
University, Spain, and INRIA Rhône-Alpes.

Overview
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Figure 2.4: Centralized adaptation of Web services – overview

In this second adaptation approach, our goal was to support data in a more straight-
forward manner: they had to be encoded as additional messages in a preprocessing step
with the previous approach. This augmented the size of the models being worked on.
Further, we aimed at enhancing the efficiency of the adaptation process with on-the-fly
deadlock pruning and adaptor reduction, as opposed to the previous approach requiring the
construction of the complete state space. Finally, we wanted to achieve a comprehensive
end-to-end approach for the service applicative domain with model retrieval from service
descriptions, adaptor verification, and adaptor implementation in BPEL.

Our approach (Fig. 2.4) takes as input service behavioral descriptions and an adaptation
contract. The descriptions are first transformed into STS formal models. Both these models
and the contract are encoded into a value passing process algebra, namely LOTOS. This is
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then used by our on-the-fly pruning and reduction tool to generate an adaptor STS model.
This model can be verified and finally implemented by transformation into BPEL.

Our proposal is supported by tools that automate the generation of the encod-
ing (Compositor), the efficient computation of the adaptor protocol from this encoding
(Scrutator), and the model-based verification of the adapted system (here we reuse Evalua-
tor and Bisimulator from the CADP toolbox). Relationship with BPEL is achieved with
two tools that respectively extract abstract service models from XML descriptions of
services (BPEL2STS) and support the generation of BPEL adaptors from adaptor models
(STS2BPEL). The adaptation contract construction can be assisted and partially auto-
mated using recent results presented in [Mart́ın and Pimentel, 2009, Cámara et al., 2009]
and implemented in the Acide tool.

Models

A (Web) service signature is a combination of data structures (defined using XML Schema),
operations, and messages (defined using WSDL). We model it as a tuple Σ = (D,O, in, out)
where D is a set of domains that correspond to (XML) types, O is a set of (provided)
operations that are either one-way or two-way, and in, out : O → D∪{⊥} denote respectively
the input and output messages of an operation (⊥ when undefined, e.g., out(o) =⊥ for any
one-way operation o). In case of a composite service, several signatures are to be taken
into account (one for each partner link). To support both simple and composite services in
a unified way, we introduce partnerships. A partnership, ρ, is a set of signatures indexed
by a set, PN , of partner names: ρ = {Σi,i∈PN}. For a simple service, ρ is a singleton that
corresponds to the service signature.

Events are built accordingly to the signature model. An input event, o?x, with o ∈ O
and x a variable whose domain is in(o), corresponds to the reception of the input message
of operation o. Similarly, we define output events o!x, the domain of x being out(o). When
messages have several parts, events are modified accordingly. Additionally, the τ event is
used to denote non-observable internal computations or conditions. Events carry symbolic
information (variables), but guards and actions are not useful in behavioral interfaces. This
is why we rely on a simpler form of STS wrt. Chapter 1. A service is a couple (ρ,B) made
up of a partnership, ρ, and a behavioral description of its protocol defined with an STS
whose alphabet corresponds to events built on the partnership signatures.

In order to specify adaptation requirements, we use again vectors and vector LTS.
However, vectors are extended with support for data. Variables are used in the events
of vectors as placeholders for message parameters. The same variable name appearing
in different events (possibly in different vectors) enables one to relate sent and received
message parameters, e.g., 〈c1 : a!sid, x, y; c2 : b1?sid, x〉 and 〈c1 : ε; c2 : b2?sid, y〉. These
correspondences are used in adaptor generation to solve data mismatches.

Process Algebra Encoding

Building an adaptor, one has to take into account different constraints. An adaptor has to
act non-intrusively, i.e., the interactions between an adaptor and a given service correspond
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to this service’s conversation. The adaptor has also to respect the system-level properties
specified in the adaptation contract. In this work, we encode these adaptation constraints
into a generic value-passing process algebra to foster genericity of the approach (see [A6]
for details). In practice, we have used LOTOS [ISO/IEC, 1989]. Symbols ↑ (emission)
and ↓ (reception) are supposed to be the symbols in the process algebra supporting data
transfer. In our encoding, we have different kinds of processes:

• si:ServiceProtocol (one for each service): these processes encode the service conversa-
tions, i.e., the ordering in which services accept or send messages (accordingly, the
ordering in which the adaptor may send or receive these messages);

• :Store (one): this process encodes data availability, i.e., which data have already been
received or not by the adaptor, hence which can be used in output messages;

• :VectorLTS (one): this process encodes the adaptation contract, i.e., it imposes the
order in which vectors can be successively applied;

• vk:Vector (one for each vector): these processes encode the vectors, i.e., the input and
output messages for the vector, together with the fact that input messages should be
received before output ones.

Central to the way adaptation constraints are encoded as different processes is the
way these constraints are related. Due to the interactive nature of these relations we
present them using a sequence diagram (Fig. 2.5) where data are omitted for readability
(however, they are taken into account in the encoding). Please note that with reference to
the standard sequence diagram notation we introduce parallel blocks (par) to express that
several interactions occur in parallel. This yields a more concise representation.

Processes synchronize to enforce ordering constraints over the reception/emission of
messages. A specific action, FINAL, is used to denote correct termination of the processes.
The fact that all processes end up synchronizing over FINAL denotes successful adaptation.
We suppose for the sake of presentation that we are in the context of a vector LTS that
prescribes the v.v′ sequence (v can be enabled and then v′ will). Further, let v be a vector
with n service outputs (i.e., n adaptor inputs), O = {si : oi}, i ∈ {1, . . . , n}, and m service
inputs (i.e., m adaptor outputs), I = {s′j : ij}, i ∈ {1, . . . ,m}, where each oi is of the
form opnamei!PHi,1, . . . , PHi,li and each ij is of the form opnamej?PHj,1, . . . , PHj,lj . For
readability purposes, placeholders are not made explicit in Figure 2.5, where each arrow
between a service process and a vector process (the oi and ij arrows) should be understood
as a synchronization between the two processes. For example, the oi arrow corresponds
to a synchronization between si : opnamei! ↑ PHi,1, . . . , PHi,li in the process for v and
si : opnamei! ↓ x1, . . . , xli in the process for si. Accordingly, the ij arrow corresponds
to a synchronization between s′j : opnamej? ↑ PHj,1, . . . , PHj,lj in the process for v and
s′j : opnamej? ↓ x1, . . . , xlj in the process for s′j . Our objective is to build the legal
orderings in which such adaptor events can occur. For this we use the constraints of the
adaptation problem as presented above. The main idea here is to use process algebra
synchronized communication (represented with arrows in Fig. 2.5).
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Figure 2.5: Encoding pattern

The vector v is first enabled through a runv synchronizing with the vector LTS process,
which gets suspended. Next, the vector tries to synchronize with all service outputs, O,
since all the corresponding messages must have been received before the adaptor can send
messages to the service inputs, I. Still, the messages for O may be received in different
orderings. Since we want to allow any possible one, we define v to receive the messages for
O in parallel (interleaving). Once all these messages are received, v sets the corresponding
placeholders to true by communicating with the store process. As far as the messages for
service inputs, I, are concerned, v checks first that all required placeholders have been set
up (either by v or another vector). If not, v waits until another vector receives the service
message(s) with the pending placeholders. Once all placeholders are available, v may
execute the I actions, again in any possible order, by synchronizing with the corresponding
services.

When a vector has been completely executed, it can be run again once enabled by the
vector LTS. However, several strategies are possible for a vector v process to release a
suspended vector (using relv). The first strategy is to wait for the complete processing of a
vector before launching a new one (Fig. 2.5, strict alternative block). The second one is to
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execute the release action once the reception of service messages has been done and before
doing the sending part (Fig. 2.5, overlap alternative block). The latter is particularly
interesting since it makes the reordering of messages possible, a typical case of mismatch
between services. However, there is no silver bullet: overlap yields larger state spaces when
computing the adaptor models. Once an adaptor has been computed from this encoding
(see below), communicating actions are relabeled removing ↑ and ↓ symbols since they
are encoding-related only. Further, communicating actions are mirrored (i.e. ? and ! are
reversed) since an adaptor mirrors service events.

Adaptor Generation

An adaptor can be obtained from the encoding by pruning paths to deadlocks in the explicit,
entirely constructed, state space. To increase efficiency, we avoid the entire construction
of the state space and instead we explore it forwards in order to generate the adaptor
on-the-fly by carrying out deadlock elimination and behavioral reduction simultaneously.

First, the execution sequences leading to deadlocks must be pruned. We do this
by keeping, for each state encountered, only its successor states that potentially reach
a successful termination state, which is source of a transition labeled with the action
FINAL. Besides avoiding deadlocks (sink states reached by actions other than FINAL), this
also avoids livelocks, i.e., portions of the state space where some services get “trapped”
and cannot reach their final states anymore. The desired successor states satisfy the
µ-calculus [Kozen, 1983] formula µX. 〈 FINAL 〉 true ∨ 〈 true 〉X. An efficient solution is
obtained by translating the evaluation of this formula into the resolution of an equivalent

boolean equation system (BES) [Andersen, 1994]:
{
Xs=µ

∨
s
FINAL→ s′

true ∨∨
s→s′′Xs′′

}
s∈S

.

This BES consists of a set of minimal fixed point equations, each one defining in its
left-hand side a boolean variable Xs indexed by a state s ∈ S and having in its right-hand
side a disjunctive boolean formula expressing whether s satisfies the modal formula or not.

The use of BES to encode deadlock elimination allows to perform this task on-the-fly,
using the Caesar.Solve library [Mateescu, 2006] of CADP, during a forward exploration
of the state space, and to store only states in memory. This is nearly optimal from the
on-the-fly perspective, since in the worst case (i.e., when the system contains no deadlocks)
one has to explore the whole state space in order to generate the adaptor.

In the same way, the adaptor STS obtained by pruning can be reduced on-the-fly
(simultaneously with its generation) modulo an appropriate equivalence relation in order to
get rid of the internal τ actions resulting from the encoding of the adaptation constraints
(e.g., run and rel) and obtain an adaptor as small as possible.

Experiments have shown that the state space actually explored on-the-fly during the
generation of the reduced adaptor can be significantly smaller than the whole state space
(down to 51% of the states and 18% of the transitions). For examples that have small
or medium sizes, these gains have a limited impact; however, they can lead to significant
memory savings for larger systems. Moreover, we observe that the ratio concerning the
number of transitions explored is smaller than the ratio concerning the states. This aspect

— which becomes more important with the increase of the branching factor of the state
space, proportional to the number of services in the adapted system — further penalizes
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explicit approaches wrt. the on-the-fly approach, because the former requires to store all
transitions in memory in order to compute the adaptor, whereas the latter allows to store
only states.

Adaptor Verification

Adaptors respect their adaptation contracts and are free of deadlocks. However adapta-
tion contracts are an input of the adaptation process, and their writing requires human
intervention. Since contracts are specified by the designer, they can contain errors that
will also appear at the level of the adaptor. Indeed, this specification may not correspond
exactly to what the designer expects from the system-to-be. Therefore, we have proposed
verification techniques for the adaptation contracts (placeholder and event consistency) and
for adaptor models (placeholder and message occurrence, safety and liveness properties,
adaptability checking in relation with non controllable service actions).

Relating Languages and Models

We have applied our adaptation technique to Web services through transformations between
service description (WSDL and BPEL) and STS. For the transformation from WSDL and
BPEL to STS, we take inspiration from our previous work on WWF [Cubo et al., 2007b].
Our transformation rules (detailed in [A6]) are also closely related to the recent work
in [Marconi and Pistore, 2009].

Due to the model-driven approach, an adaptor model may contain parts which are not
implementable in a given language (here, BPEL). Take the example in Figure 2.6 with two
services (top and bottom left) and a user need (bottom right).

receive
o1

reply
o1

receive
o2

reply
o2

a

b, sid

sid

c

receive
o3

reply
o3

b

d

invoke
o

a

c,d

Figure 2.6: The need for filtering – motivating example (BPMN-inspired graphical notation
for BPEL)

A corresponding adaptor is given in Figure 2.7. First, any path passing through state x
cannot be implemented, since o2 (resp. o3) being two-way, one cannot invoke o3 (resp. o2)
before getting o2 (resp. o3) result. Further, the condition to choose between invoking first
o2 and then o3 or the converse is not specified. Indeed they could be invoked in parallel
which is not explicit on an LTS/STS model. This is to be further discussed in the next
section.
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Figure 2.7: The need for filtering – adaptor LTS model

Therefore, adaptor implementation is achieved in three steps: filtering, model cleaning,
and generation. Filtering ensures emission determinism, priority of receptions over emissions,
and atomicity of the emission and reception corresponding to the invocation of a two-way
operation. Model cleaning is then used to ensure that deadlocks are not introduced by
filtering. Filtering may remove parts of the adaptor model. If deadlock-freeness is preserved,
some properties of the adaptors may change. It is therefore interesting to verify the filtered
adaptors, which can be done using our verification techniques. Finally, filtered and cleaned
adaptor models are encoded in BPEL using a specific design pattern, namely the state
machine pattern.

2.4 Distributed Adaptation of Semantic Web Services

[IP23,S2] – work done in the context of collaborations with colleagues from Evry University
and INRIA Paris-Rocquencourt.

Overview

In this work our first objective is to enable generative adaptation without requiring the
need for adaptation contracts, and as a consequence enable fully-automatic restrictive and
generative adaptation. Further, we take a data centric perspective (as opposed to a message
centric one) over adaptation. The issue is to have partner services exchange information in
such a way that each one may progress in its objectives (i.e., collaboration), rather than
performing mitigation at the message level to achieve a global goal (i.e., cooperation). For
this, we rely on semantic annotations. This corresponds to a form of additional typing
and a transfer from an in-the-large software architect work (defining adaptation contracts)
to an in-the-small service developer work (adding annotations in service interfaces). Our
second objective was to avoid centralized adaptors and enable distributed adaptation.

Given n semantic services to compose (the partners), our approach (Fig. 2.8) follows the
stepwise approach for adaptor synthesis proposed in [Inverardi and Tivoli, 2003], rephrasing
it in a semantic data centric perspective, with three distinct steps: (i) the generation of a
compatible (correct) service client (CSC) for each partner service, which allows to interact
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Figure 2.8: Distributed adaptation of semantic Web services – overview

with the partner without changing its protocol, (ii) using the CSCs, the definition of a
central global adaptor that defines all the valid interactions between partners, and finally
(iii) the transformation of CSCs into local adaptors using the global adaptor protocol. The
final desired architecture follows the distributed adaptation pattern (Fig. 1.12, right) and
is such that there is compatibility between each partner and its local adaptor and between
the adaptors. This yields the deadlock freedom of the global system.

Models

To support automatic composition, service descriptions must be extended with descriptive
semantic information. The resulting integrated formal model allows reasoning on service
compatibility at three levels at the same time (signature, behavioral and semantic levels).

Definition 2.4.1 (Semantic Structure). A semantic structure I is a couple (U ,R) where
U is a set of units of sense (UoS), over which we range using u, and R ⊆ 2U × U is a
relation where (U, u) ∈ R denotes that given a set U of UoS, one can obtain u.

These structures support partner collaboration and can be related to concrete ontologies
referenced, e.g., in a SAWSDL [W3C, 2007] service description, where units of sense
correspond to the ontology concepts and properties, while R can be used to encapsulate
relations such as the ”subclassOf” one, i.e., ∀u, u′ ∈ U , u′ subclassOf u⇒ ({u′}, u) ∈ R. A
semantic structure may result from ontology integration, e.g., following [Brogi et al., 2006b],
and support different semantic structures for different partners.

A service receives requests, process them and sends answers back. Yet, to process
a request, behind its representation (the message format), a set of information, UoS, is
required. In turn, replies contain (possibly new) UoS. To support the automatic use of
such a service by a partner, one has to ensure that all required information is known by the
partner, format the request message and package the information into it, call the service,
get the response, and finally process it to extract the set of information that is returned
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back. This principle is at the core of our adaptor behaviors and is supported through
semantic matching functions.

Definition 2.4.2 ((Semantic) Matching Function). A matching function for a service ω
with messages Mω over a semantic structure I = (U ,R) is a function SMω,I : Mω →
2U×Xpath(Mω) with Xpath(Mω) the set of Xpath expressions defined over Mω.

These functions are used to associate to each message in a service ω the set of UoS
it corresponds to, together with a syntactic expression (Xpath) that makes it possible to
relate these UoS with the message XML tree. We also introduce a formal definition of
partners and partnerships as a set of services collaborating on top of a semantic structure.

To support automatic adaptation and composition, the operational semantics of a
partner should also be defined through its evolution over time, directed by its behavior, of
hypotheses on the UoS it holds. This can be described using configurations.

Definition 2.4.3 (Configuration). Given the set ABP of abstract BPEL processes and a
semantic structure (U ,R), a configuration is a tuple (P,H) where P ∈ ABP is the process
and H ∈ 2U is its semantic environment.

The operational semantics of partners is then defined using Semantic TIOLTS (STI-
OLTS). This is a kind of LTS where states are configurations and events include termination,
discrete time passing, non observable events, and disjoint input and outputs events for
the partner messages. We define an ABPEL to STIOLTS transformation that extends an
ABPEL to TIOLTS transformation [Haddad et al., 2004b] with semantic data evolution
constraints: given a service ω and a message m, the reception of m in ω augments its set
of known UoS (H ← H ∪ SMω,I(m)) and the emission of m by ω is constrained by the
fact that the UoS for m should be known (SMω,I(m) ⊆ H).

Generation of Correct Service Clients

We compute, for each partner ρ, a CSC ρc which acts as a perfect environment for it and
ensures compatibility by construction. Two tasks are performed on a partner STIOLTS
to build its CSC STIOLTS: messages are complemented (exchanging directions) and the
resulting STIOLTS is determinized, following [Haddad et al., 2004b]. At the time, a CSC
does not really provide the required operations to its partner, but only the corresponding
received and/or send messages. The CSC must now be extended with implementations of
these operations in terms of interactions with other CSCs. This is the objective of the next
steps, where a global structure (called global adaptor) is first built (step ii) before being
used to extend the CSCs into local adaptors (step iii).

Generation of a Global Adaptor

Composing partners correctly in a partnership means to have their CSC exchange required
data until all terminate. The global adaptor (GA) is a composition of the CSC STIOLTS
formalized as an extension of the asynchronous product of LTS (Chap. 1) supporting
the data evolution constraints presented above. Moreover, in this extended asynchronous
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product termination events,
√

, are synchronized to ensure correct termination. The GA
has access to UoS originating from (different messages of) different partners. We need
to distinguish them in order to support step (iii): when adaptation is distributed, we
must be able to detect which messages were used to obtain a UoS. Therefore, in the GA
configurations, the semantic information is stored as couples (m,u) where u is an UoS and
m is the message (that uniquely denotes a partner) the information comes from. In order
to achieve restrictive adaptation, pruning paths to deadlock on the GA is performed.

Generation of Local Adaptors

The GA defines all valid interactions. Using it, we can generate for each partner ρ a local
adaptor (hereafter adaptor for short) by extending its CSC ρc in three steps: (a) defining,
for each message m sent by ρc to ρ, the set of UoS from other CSC used to construct
m, and receiving in ρc these UoS (using one or several new messages) before sending m;
(b) defining, for each message m received from ρ in ρc, the set of interested CSC that need
UoS from m to send some message to their own partner, and sending in ρc the UoS to
these interested CSC (using a new message also named m); (c) updating the ρc alphabet
and operations. All these operations can be done by analyzing GA.

Step (a) is performed first using backward analysis in GA, from the sending of m by ρc

to ρ, back to the messages that made the UoS (u) required for building m available. Yet,
it is possible to look only one step back thanks to the way we build GA configurations
(couples (m′, u), where m′ is the message u comes from, sent to GA by some ρ′c). If a
UoS may come from several messages (and/or several CSC) then we non-deterministically
choose one. We may then obtain the extended behavior of ρc by adding a new event for the
reception of m′ from ρ′c in the alphabet of ρc and then by projecting GA on this alphabet:
this will include the original behavior of ρc plus the reception of m′ at any possible moment
where ρ′c may send it. Hence no deadlock may be introduced by these new exchanges.
Correspondingly, in step (b), an adaptor ρc must forward any message m received from its
partner ρ to the adaptors that need it. This is achieved using GA forward analysis and the
results of step (a). The last step, (c), is to add provided/required operations in partners
accordingly to the extensions of their behavioral model alphabets done in steps (a) and (b).
The adding of receptions and emissions in CSCs is transparent for their partners. Moreover,
added emissions do not change the emitter CSC configuration. This preserves in adaptors
the CSC correctness by construction. Our approach does not impose any constraint on
resulting adaptors but for communication, data extraction from messages, and message
construction (the latter two being supported by the Xpath part in matching functions),
which makes it possible to reuse implementation techniques presented before.

Extension to True Concurrency Models

In a recent work [S2], this work has been extended to the use of a true concurrency model,
namely LES, instead of (STIO)LTS as the formal grounding. The main differences are
the following. First, LES are retrieved from an abstract workflow language rather than
ABPEL. The retrieval of a GA using an LTS product is no longer needed. This is naturally
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supported in LES using the union operator, the GA being replaced by the union of the
CSC LES. Further, parallelism was implicit in the former approach. This was especially
an issue in GA (yielding an important number of interleavings) and in local adaptors
(where interleavings where relative to the added receptions of required information, step
(a) above).

e4(o2!) e6(o2?)

e1(o?) e2(o1!) e3(o1?) e8(o!)

e5(o3!) e7(o3?)

Figure 2.9: No need for filtering - adaptor LES model

Using LES, parallelism is explicit in the whole adaptation process. This is of particular
interest for adaptor implementation as can be seen in Figure 2.9 that is the LES that
corresponds to the adaptor LTS given in Figure 2.7. Here, it is easy to detect that the
invocation of o2 (two messages) and the invocation of o3 (two messages) can be done in
parallel, and e.g., implemented as a BPEL flow.

2.5 Automatic Composition of Semantic Web Services

[IP24,IP30] – work done in the context of collaborations with colleagues from Concordia
University, Canada, and INRIA Paris-Rocquencourt.

Overview

The objective of this composition approach is to support fully-automatic composition,
expressiveness in service descriptions and composition requirements, and adaptive features
to solve both horizontal and vertical mismatch. This is performed (Fig. 2.10) first by
generating and encoding into planning problems the composition process inputs: semantic
descriptions, service descriptions including a conversation given as an operation workflow,
and composition requirements including a conversation given as an abstract capability
workflow. These planning problems are then joint into a global planning problem that is
solved using a graph planner. Finally, the output of the planner can be transformed into
a BPEL orchestration. Our composition approach is supported with a tool, pycompose,
that supports the use of several state-of-the art graph planners, including one based on
SAT-solving for plan extraction.

Models

As in the previous work, we also rely on semantic information to enrich service descriptions
and composition requirements, and to automatize the composition process. We have two
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Figure 2.10: Automatic composition of semantic Web services – overview

kinds of semantic information. Capabilities represent the functionalities that are either
requested by the end-users or provided by services. They are modeled using a Capability
Semantic Structure (CSS), that support the resolution of vertical mismatch. Further,
service inputs and outputs are annotated using a Data Semantic Structure (DSS), that
support the resolution of horizontal mismatch.

Definition 2.5.1 (Data Semantic Structure). A Data Semantic Structure (DSS) is a tuple
(D,C,@) where D is a set of concepts that represent the semantics of some data, C is a
composition relation ((d1, x, d2) ∈ C, also noted d1 Cx d2 or simply d1 C d2 when x in not
relevant for the context, means a d1 is composed of an x of type d2), and @ is a subtyping
relation (d1 @ d2 means d1 can be used as a d2).

DSSs are the support for the automatic decomposition (of d into D if D = {di | dCdi}),
composition (of D into d if D = {di | dC di}) and casting (of d1 into d2 if d1 @ d2) of data
types exchanged between services and orchestrator. We also define a Capability Semantic
Structure (CSS) as a set K of concepts that correspond to capabilities. This set includes
an element ⊥ that denotes a do-nothing capability.

A service is a set of operations described in terms of capabilities, inputs, and outputs.
Additionally, services have a conversation defined using an operation workflow (Chap. 1).

Definition 2.5.2. Given a CSS K and a DSS D = (D,C,@), a service is a tuple
w = (O,WFO), where O is a set of operations, an operation being a tuple (in, out, k) with
in ⊆ D, out ⊆ D, k ∈ K, and WFO is a workflow defined over O.
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Finally, service composition requirements are given in terms of the inputs the user is
ready to provide and the outputs this user is expecting. Additionally, the capabilities that
are expected from the composition are specified, and their expected ordering given under
the form of a capability workflow.

Definition 2.5.3. Given a CSS K and a DSS D = (D,C,@), a composition requirement
is a tuple (Din, Dout,WFK) where Din ⊆ D, Dout ⊆ D, and WFK is a workflow defined
over K.

Planning Problem Encoding

We give the details of the encoding in [IP30]. Here we present only the general ideas of it.

DSS encoding. For each relation between data in the DSS, we generate one or two action(s)
that represent the effect of this relation. For each dC{xi : di} in the DSS we have an action
compd(

⋃
i{di}, ∅, {d}) and an action decd({d}, ∅,

⋃
i{di}) to model possible (de)composition.

Moreover, for each d @ d′ in the DSS we have an action castd,d′({d}, ∅, {d′}) to model
possible casting from d to d′. These actions do not have negative effects since once a data
is known or has been computed, it is never destroyed.

Workflow encoding. We reuse here a transformation from workflows to Petri net defined
in [Kiepuszewski, 2003]. Instead of mapping a workflow to a Petri net, we map it to a
planning problem. Given a workflow WA = (P,→, N), we have an action for each node in
P and for each control flow element in →. Each of these actions requires, to be enabled,
that some proposition(s), B−, are available. Then, the action consumes these propositions
and creates new ones, B+, that will enable subsequent actions in the workflow. This
corresponds to actions being encoded as (B−, B−, B+).

Composition requirements encoding. A composition requirement (Din, Dout,WFK)
is encoded as follows. Din and Dout are used to set up the initial state and the goal of
the planning problem. Then, we compute the set of actions resulting from the encoding
of WFK. We also have to deal with two constraints (Fig. 2.11). First, capabilities in the
composition requirement workflow (WFK) encoding prescribe when operations in service
workflow (WFO(w)) encodings can be done. In turn, these operations, when done, let
further capacities to be enabled. To achieve this, we rely on two requirement/service
interaction propositions: ek (k enabled) and dk (k done). A third kind of propositions,
linka, is used to avoid incorrect interactions in case of parallel flows [IP30]. We replace
any action a (corresponding to a workflow activity labeled by k) in the encoding of
WFK by two actions, a′ and a′, and we set a′ = (pre(a), effects−(a), {ek, linka}) and
a′ = ({linka, dk}, {linka, dk}, effect+(a)).

Service encoding. Each service w = (O,WFO) is encoded as follows. First we encode
the workflow WFO. Then, for each action a (corresponding to a workflow activity labeled
by o) in this encoding we add (Fig. 2.11):

• in(o) in pre(a) to model the inputs required by operation o and out(o) in effect+(a)
to model the outputs provided by operation o.
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Figure 2.11: Principle of the interaction between requirements and service actions

• ek(o) in pre(a) and in effect−(a) and dk(o) in effect+(a) to implement the interaction
with the composition requirement workflow.

Overall encoding. Given a DSS D, a set of services W , and a composition requirement
(Din, Dout, WFK), we obtain a planning problem doing the union of all encodings (some
renaming being performed to avoid name clashes), by setting the initial state of the planning
problem to be Din plus all propositions encoding workflows initial states, and by setting
the goal of the planning problem to be Din plus all propositions encoding the workflows
final states.

Planning vs. Petri nets. Our approach could be rephrased replacing the encoding into
actions by (i) an encoding into Petri nets, (ii) the fusion of these Petri nets on common
places, and (iii) the encoding of any transition t in the fused Petri net by a planning action
a(t) = (•t, •t\t•, t•). The benefit of using planning graphs instead of Petri nets is the use
of efficient planners, e.g., based on SAT solving, for plan retrieval and the possibility to
reuse partially broken planning graphs for composition repair (Sec. 3.5).

Plan Retrieval and Implementation

We solve the composition problem by applying graph planning (Chap. 1) on the encoding.
We may get a failure when there is no solution satisfying both that (i) a service composition
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exists to get Dout from Din, (ii) using operations/capabilities in an ordering satisfying both
used service operation-based conversations and composition requirements capability-based
conversation, (iii) leaving used services in a final state. In other cases, we obtain a plan π.
First, we filter π by removing from it all actions that correspond neither to a DSS relation
nor to a service operation, i.e., that is a purely structuring item, not corresponding to data
transformation or service invocation. Given the filtered plan, we can generate a BPEL
implementation for it as done for transitions systems in the previous sections. Still, we
may benefit here from the fact that actions that can be done in parallel are explicited in a
graph planning plan (using operation ||).
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Verification and Repair

3.1 State of the Art and Contributions

State of the Art and Contributions on Testing

The state of practice in service testing has been limited for a long time to the use of tools,
such as SOAPUI or BPELUnit, that release from the burden of the translation of implemen-
tation independent test cases into SOAP messages, operation calling and test management.
However, test-cases were mainly generated using empirical approaches, often without au-
tomation. In the last years, the software testing community has started to get involved in the
service field. As a consequence, works have tried to bridge the gap between current practice
in service testing and state-of-the-art formal and automated software testing. Recent and
comprehensive surveys can be found in [Bucchiarone et al., 2007, Canfora and Penta, 2009,
Bozkurt et al., 2010, Endo and Simao, 2010, Rusli et al., 2011]1.

A first way to test services is to focus on signature interfaces (WSDL). These ap-
proaches enable to test operations independently but do not tackle testing of services with
conversations or orchestrations. Taking into account behavioral descriptions can be studied
using source code coverage criteria. However, such white-box approaches assume that the
implementation source code is available. This is suitable for testing at development time
by service providers but not later on for service users that only have access to the binary
implementation. For the numerous proposals that fall in these two categories, we refer to
the above mentioned surveys. In our context, we are interested in black box testing related
to the behavioral conformance of an implementation with reference to a specification.

An important issue in Web service testing is the treatment of the rich structured
data being used in service exchanges. This may be abstracted away but at the risk
of over-approximation and testing false negatives. Such data cause state explosion

1Comparison tables are given in [Bozkurt et al., 2010, Rusli et al., 2011] and include reference to [IP26].
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problems. Few approaches for behavioral testing of services propose solutions to this.
In [Sinha and Paradkar, 2006], extended finite state machines are retrieved from WSDL-S,
a semantic extension of WSDL including pre/post conditions, and a theorem prover is
used to generate test cases. A control flow graph based technique that relies on symbolic
execution and a constraint solver is presented in [Yan et al., 2006]. In [Zheng et al., 2007],
an encoding into Promela is used and test cases are generated using counter examples
produced by the SPIN model-checker. An approach based on STS models is proposed
in [Frantzen et al., 2009], where test cases are built on-the-fly by simulating the specification
step by step. The models used for testing are retrieved from BPEL specifications of the or-
chestrations in [Yan et al., 2006, Zheng et al., 2007], while [Frantzen et al., 2009] relies on
UML state diagrams for this. Most of the service testing approaches supporting behavioral
specifications are interested in test case generation, but do not tackle the remaining steps
with fully-automatic test passing and online test oracle implementation [Rusli et al., 2011].
In [Sinha and Paradkar, 2006, Yan et al., 2006], passing the tests (including tool support
for this) is not addressed. This is achieved using JUnit in [Zheng et al., 2007], still, the
user has to enter input data. In [Frantzen et al., 2009], random generation is used to
create input data. However, in their on-the-fly approach, input data are realized transition
by transition. Hence it is not possible to select given symbolic paths to test (test objec-
tives) and generate data for it. Combining on-the-fly testing with symbolic execution is a
perspective of [Frantzen et al., 2009].

Verification of service choreographies has mainly been addressed with a design-time
verification point of view, see, e.g., [Busi et al., 2006, Qiu et al., 2007, Foster et al., 2010,
Roohi and Salaün, 2011, Basu and Bultan, 2011], developing techniques for peer genera-
tion or checking the conformance of such peers (steps A1–A2 and B in Fig. 1.9, right).
While orchestration testing has been largely addressed, at least as far as testing one port
(user) is concerned, few works address the testing of service choreographies. Dynamic
symbolic execution is used in [Zhou et al., 2010] in an active (hence intrusive) testing
approach that considers the implementation as a white box. A passive testing approach
is proposed in [Andrés et al., 2010]. Specification is given as local and global invariants
rather than with a choreography specification language.

Contributions. In [IP26, IP31] (Sect. 3.2), I have proposed a symbolic framework for
online conformance testing of service orchestrations, thus achieving the corresponding
perspective in [Frantzen et al., 2009]. Taking inspiration on earlier works in symbolic
testing [Jeannet et al., 2005, Gaston et al., 2006, Frantzen et al., 2006], this framework is
based on symbolic models (STS) and symbolic execution, hence avoids the state-explosion
problems due to value passing in messages exchanged between services. Following principles
P5 and P6, this is also an end-to-end and tool supported approach, taking into account
the retrieval of specification models from a real language (ABPEL), the passing of test
cases using SOAP messages and test verdict with an online testing oracle. In [IP26],
testing is performed based on structural coverage criteria. This is extended in [IP31] with
symbolic test objectives, that enable one to test specific properties of interest, and the
use a Satisfiability Modulo Theory (SMT) solver that supports more constraints and the
rich XML based structure of service data. Taking the specification as the requirement an
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end-user or another (client) service has over some reusable service, this framework can be
used not only at development time but also at deployment (for requirement based service
selection) and at execution time (for service replacement).

As a complement to orchestration testing, that focuses on the “client” port of a cen-
tralized composition, I have tackled the testing of compositions in-the-large. In [IP32]
(Sect. 3.3), I have proposed an approach for the conformance testing of distributed or-
chestrations with reference to choreography specifications. In this work I address the
peculiarities of choreographies through non-intrusiveness (using passive testing), support
for peers without source code being available (using black-box testing), and both local and
global conformance. Again, this approach is fully tool supported, including the extension
of a standard BPEL engine to log the SOAP messages exchanged between the distributed
peers.

State of the Art and Contributions on Choreography Verification

Realizability has been initially studied for MSC [Alur et al., 2003, Uchitel et al., 2004,
Alur et al., 2005], i.e., interconnected interface models. It has later been studied in the
context of Web services with interaction models such as specific choreography process alge-
bras or UML collaboration diagrams. Several choreography approaches enforce realizability
restricting the choreography specifications with well-formedness rules or sufficient con-
ditions [Carbone et al., 2007, Fu et al., 2004, Bultan and Fu, 2008, OMG, 2011]. Others,
like [Qiu et al., 2007], introduce new constructs and associated projections in choreography
languages that result in the adding of additional messages in peers for this. The adding of
messages to ensure realizability is also proposed as a solution in [Salaün and Bultan, 2009]
and also relates to orchestration distribution [Gowri Nanda et al., 2004, Chafle et al., 2005]
or distributed adaptation [Inverardi et al., 2005, Autili et al., 2008].

Most of the work dedicated to realizability assumes a synchronous communication
model, e.g., [Busi et al., 2006, Li et al., 2007, Carbone et al., 2007, Qiu et al., 2007]. Few
approaches support asynchronous communication. This is achieved using sufficient con-
ditions in [Fu et al., 2004, Bultan and Fu, 2008], bounded asynchronous communication
in [Salaün and Bultan, 2009], controllability analysis in [Lohmann and Wolf, 2010], and
synchronizability in [Basu and Bultan, 2011],

Contributions. In [IP33] (Sect. 3.4), I propose an approach for the realizability checking
of BPMN 2.0 choreographies. A first contribution is the transformation of BPMN 2.0
choreographies into the LOTOS NT process algebra. This paves the way for further
development of formal tools dedicated to the new standard BPMN 2.0 choreography
notation. Realizability can be checked both in a synchronous and in an asynchronous
communication framework, which fosters applicability. Finally, this approach is totally
tool-supported, bridging design in the Eclipse BPMN 2.0 editor and verification using the
CADP toolbox.
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State of the Art and Contributions on Run-Time Repair

We have seen in Chapter 2 that software architects and end-users could benefit from
automatic service composition techniques. Still, these techniques should support the
automatic evolution of compositions, taking into account changes both in the needs of the
(possibly mobile) end-users and in service availability, causing broken compositions.

When the issue is to react to a disappeared or faulty service, or to a service with
a bad QoS, a first solution is replacement, i.e., replacing a service by a brand new one.
Replacement is an efficient technique as far as computation time is concerned. However,
it is limited to 1-1 substitution. Further, it focuses on finding replacement for broken
services, while solving a broken composition may require removing additional services or
may introduce the need for new services in case of added requirements. Going further
than 1-1 substitution, supporting both 1-n substitution and added needs, can be done with
recomposition, i.e., running a composition algorithm on an updated composition problem,
hence recomputing causal input/output relations between services. Any algorithm defined
for service composition [Marconi and Pistore, 2009] would apply there, including many
ones based on some form of planning. Software adaptation [Seguel et al., 2008] may also
be used as a repair technique in case it is possible to keep the original (broken) composition
unmodified and build a mediator in between this and available services. Yet, computing a
mediator is as expensive as computing a new composition.

Contributions. To correct broken compositions, I have proposed in [IP27, IP28, IP29,
S3] (Sect. 3.5) repair as an alternative solution that goes beyond the limits of service
replacement while avoiding recomposition. This technique aims not only at keeping most
of the composition models as-is (not recomputing them), but also at taking benefit from
them while computing a corrected composition. As such, repair is a form of heuristic and
guided partial recomposition. In case of 1-1 substitution, repair performs as replacement
and is as efficient. In other cases and for added needs, repair yields better computation
time wrt. recomposition while retrieving solutions of the same quality. This approach
is completely tool-equipped, including going beyond models, i.e., reading ontologies and
service descriptions files and generating BPEL orchestrations.

3.2 Conformance Testing of Service Orchestrations

[IP26,IP31] – work done in the context of L. Bentakouk Ph.D thesis.

Overview

In our orchestration testing framework (Fig. 3.1), the orchestration specification is first
transformed into an STS model. In a second step, a SET is computed from this STS.
It represents (a finite subset of) the STS execution semantics, while avoiding the usual
state-explosion problem in presence of unbounded data types, as used in full-fledged BPEL.
Given a coverage criterion, we generate from the SET a set of symbolic test cases which
are finally realized online and run against an implementation, i.e., the Service Under
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Figure 3.1: Conformance testing of service orchestrations – overview

Test (SUT). As an alternative or in combination with coverage criteria, one may describe
properties of interest to be tested. This is performed using symbolic test purposes specified
with STS and performing a product between the specification STS and the test purpose
STS prior to SET computation. Our framework is supported by SWST (Symbolic Web
Service Testing), a set of tools that we have developed. SWST relies on external constraint
solvers in the SET computation (path condition consistency checking) and in the symbolic
test case realization (SUT input generation and SUT outputs checking).

Models

Orchestration specification model. Several models have been proposed for service
composition [ter Beek et al., 2007]. They mainly differ in their formal grounding (Petri
nets, transition systems, or process algebra), and the subset of service languages being
supported. We have based on [Mateescu and Rampacek, 2008] due to its wide coverage of
the BPEL language constructs, which is, through extension, amenable to symbolic execution.
With reference to [Mateescu and Rampacek, 2008], we support with our transformation
rules (see [IP26] for details) data in computation, conditions and messages, message faults,
message correlation, parallel processing (flow) and the until activity. More specifically,
support for data yields grounding on (discrete time) STS and their symbolic execution,
rather than on (discrete time) LTS. With reference to the BPEL to STS transformation
used for adaptation in Chapter 2, for testing we rely on STS in the large, that is, also on
guards and actions.

Test purposes. Test purposes (TP) enable one to focus on specific requirements, e.g.,
functional properties, during the test process. We suppose these are given as STS too, yet,
it has been shown that such transition system models could be obtained automatically
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from human-friendly descriptions such as sequence diagrams [Uchitel et al., 2003]. Test
purpose models are defined according to the orchestration (specification) models they refer
to. Given an orchestration STS model B, a TP for B is an STS TP with some constraints
[IP26]. Variables and domains in TP include the B ones. Further, TP may introduce
additional variables for expressiveness, e.g., to denote additional conditions in the TP to
focus on a subset of the model behavior. Events used in TP correspond to the B ones but
for the introduction of a specific event, *. Transitions labeled with * may neither have a
guard, nor actions, and are used to abstract in TP one or several B transitions that are not
relevant for the expression of the requirement. Finally, a TP defines a specific subset of the
states, Accept, that denotes TP satisfaction (if the implementation goes up to such a state
then the test passes). Finally, we impose that TP is consistent with B, i.e., TP symbolic
traces are included in B ones. This can be checked using symbolic execution, where we
also have to check that the path condition corresponding for the TP trace implies the path
condition of the B trace.

STS symbolic product. To generate test cases we have to take into account constraints
specified both in the specification and in the TPs. This is achieved using an STS (symbolic)
product that is built using four rules (see [IP31] for the detail of these rules). Two rules are
used for asynchronous evolution of the model (resp. the TP) on non observable events. The
third rule is use to synchronize the model and the TP on common explicited communication
events. Finally, the last rule is used to synchronize the model and the TP on common
implicit communication events (corresponding to ∗ in the TP).

Tests Generation and Execution

SET Computation. The SE of a program is represented by a SET. Since we apply SE
to the STS obtained from orchestrations, the program counter in the SET is an STS state,
and its variables correspond to the STS variables, i.e., in turn, to the specification variables.
In case the STS results from the product between the specification STS and a TP STS,
additional variables used in the TP are also part of the SET variables. The edges of the
SET, ESET, are elements of NSET ×Evsymb ×NSET, where Evsymb corresponds to the STS
events with symbolic variables in place of variables. We explain in [IP29] how the SET is
computed. We also explain how we cut off the inconsistent path conditions by means of a
constraint solving tool and how we prune the SET with a path length criterion (k ∈ N).
Once the SET is computed, we have to extract the test cases and to execute them.

STC extraction. Symbolic test cases correspond to the SET paths. However, it may
be relevant to test only paths leading to orchestration termination (

√
) even if it is not

strongly required for Web services since different instances are run for each test case. Due
to our k path length criterion in the SET computation, it follows that symbolic test cases
have a length n ≤ k. Notice that we can increase the value of k if we did not find errors
during the execution of tests.

Online realization with a constraint solving tool. Since Web services are reactive
systems, test case realization has to be performed step by step, by interacting with the
SUT. This is to avoid emitting erroneous verdicts. Let us take an execution path (i.e., a
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symbolic test case) pl.o?x.pl.o!y ending in node η = (s, π, σ), with π = vs0 >2∧vs1 >vs0
and σ = {x → vs0 , y → vs1}. Realization all-at-once would yield a realized path (i.e., a
realized test case) p?vs0 , p!vs1 with, e.g., {vs0 → 3, vs1 → 4}. Let us suppose now that we
send message p with value 3 to the SUT and that it replies with value 5. We would emit a
Fail verdict (5 6=4), while indeed 5 would be a correct reply (5>3). Concretely, the tester
is implemented as a reactive process that mirrors the observable behavior of the test case.
We begin with the PC in the last state of the SET path corresponding to the test case.
Whenever the tester has to send a message to the SUT, PC is solved to get correct data
values to send. Whenever the tester has to receive a message from the SUT, a timeout is
run. If it ends before we receive the message there is an Inconclusive verdict. If we receive
the message from the SUT, data is extracted from it and the PC is updated with equality
constraints between the reception variable(s) and the observed data, and the updated PC is
then checked to see if the data is correct or not. In both cases, we rely on a constraint solving
tool. Preliminary experiments have been undertaken with UML2CSP [Cabot et al., 2007]
and later on with the Z3 SMT solver [de Moura and Björner, 2008], supporting more
constraints in PC (hence more conditions in the BPEL specifications) and enabling more
automation of the test process (no tuning of the symbolic variable domains is required).

Observability and controllability. When the tester receives an unexpected message,
it does not always corresponds to an error (and hence, to a Fail verdict). Due to non
observable events and internal communications with sub-services in orchestrations, the
state where we are in the test case execution does not always correspond to the state in
which a correct implementation may have evolved. Therefore, whenever we receive an
unexpected message, we check if it is accepted in a set of potentially reached states. If it is
not the case, we produce a Fail verdict, else an Inconclusive verdict.

3.3 Conformance Testing of Service Choreographies

[IP32] – work done in the context of H.-N. Nguyen Ph.D thesis.

Overview

Our choreography testing approach (Fig. 3.2) is as follows. At the specification level,
from a choreography specification (C), we retrieve its trace set ([[C]]), a set of local
requirements (Ri) using projection, and the trace sets of these local requirements ([[Ri]]).
At the implementation level, that we denote with Impl, we assume a one-to-one function
between the roles in C and the peers in Impl: each role Ri is implemented by exactly one
peer Pi, and each peer Pi implements exactly one role Ri. We have a point of observation
(PO) for each peer, where we gather message exchanges in a local log (li). Using all these
logs, we synthesize a global log (L). We assume that there exists a global clock to support
global log synthesis. This assumption holds, e.g., when peer collaborations are deployed
over clouds. Global log, L, and local logs, li, are then respectively checked against [[C]],
to establish global conformance, and [[Ri]] to establish local conformance. Our approach
is fully automated with a tool whose architecture follows Figure 3.2 and that contains
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Figure 3.2: Conformance testing of service choreographies – overview

modules for SOAP message logging, global log synthesis, Chor management (parsing, role
generation, trace semantics), global and local conformance.

Choreography specification with Chor

We chose the Chor [Qiu et al., 2007] language for the specification of choreographies.
While being simpler than more general purpose languages such as BPMN or UML, it is
expressive and abstract enough to enable one to specify collaborations. Chor can also
be seen as an abstraction of the WS-CDL [W3C, 2004] standard. Further, Chor is based
on an interaction model and defines both a choreography language, a role language, and
projections between global and local (role) descriptions supporting the formal treatment of
collaborations at both viewpoints.

Chor includes basic and structuring activities. skip denotes a do-nothing action, while
c[i,j] represents a basic interaction on some medium c between two roles of the choreography,
namely i and j, called performers of the interaction. Since Chor is concerned about the
abstract specification of the collaboration, the instantiation of some interaction medium,
and details associated to it (e.g., exchanged data) is part of the developer duties. This
can be, e.g., using message and message parts in a Web service framework. We restrict
to an observable fragment of Chor, i.e., we do not take into account the specification at
the global level of local non-observable actions. Structuring in Chor is achieved using
sequencing (;), exclusive choice (u) and parallel flows (‖).

Role requirements are described in a dialect of Chor called role languages (Role for
short) with the only difference that a global interaction c[i,j] corresponds in role i (resp. j)
to an emission denoted c[i,j]! (resp. reception denoted c[i,j]?). The semantics of a Chor
(local or global) specification C is given in terms of its trace set [Qiu et al., 2007].
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Formalization of Conformance

In passive testing, implementations may only be observed and checked for conformance
using their logs, which are (linear) sequences of observations. Further, the Chor semantics
is given in terms of its execution traces. This advocates for the use of a trace equivalence
or a trace preorder. Further, the relation between a choreography specification C and an
implementation Impl can be seen with two mirror perspectives. In the former perspective,
it is the coordination middleware that is tested. One is interested in the fact that Impl
strictly enforces (over connected peers) what is described in C. Impl should then exhibit
at least (or exactly) the behavior described in C. This corresponds to orchestration
active testing, as shown, e.g., in the previous section. In the second perspective, it is the
cooperation of the peers that is tested. One is interested in the fact that the peers do
not interact in some other ways than what is specified in C. This corresponds to passive
testing using logs at the peers’ locations. In such a case, we impose that the traces of Impl
are included in the S ones. In this work, we focus on this second perspective. We may now
give the formal definition of conformance. For this we base on trace preorder.

Definition 3.3.1 (Trace preorder). Given any two traces σ1 and σ2, and any event α,
trace preorder is defined recursively as follows: (i) 〈〉 � σ2 and (ii) α.σ1 � α.σ2 iff
σ1 � σ2.

Given two trace sets T1 and T2, we write T1 � T2 iff ∀t1 ∈ T1, ∃t2 ∈ T2 | t1 � t2.
Indeed, while implementing a choreography, the developer may have to add important
additional exchanges or synchronizing activities in the peers. This is especially the case with
non-realizable choreographies. Let us take for example the C1 choreography specification
that we saw in Chapter 1, C1 = m1

[P1,P2];m2
[P3,P4]. Projecting it on its roles we get

RP1 = m1
[P1,P2]!, RP2 = m1

[P1,P2]?, RP3 = m2
[P3,P4]!, and RP4 = m2

[P3,P4]?. Implementing
the specification using these four peers as-is, i.e., Impl = RP1 ‖ RP2 ‖ RP3 ‖ RP4 , the
developer cannot prevent that P3 and P4 interact on m2 before P1 has sent m1 to P2:
trace 〈m2

[P3,P4],m1
[P1,P2]〉 is in [[Impl]] while it is not in [[C]] = {〈m1

[P1,P2],m2
[P3,P4]〉}. The

developer may decide to add a synchronizing message between P2 and P3, msync, to enforce
the choreography, i.e., implementing P2 and P3 respectively by m1

[P1,P2]?;msync
[P2,P3]! and

msync
[P2,P3]?;m2

[P3,P4]!. However, in such a case, we would not have conformance, i.e.,
[[Impl]] 6� [[C]]. To support this, we formally define conformance as follows.

Definition 3.3.2 (Conformance). Given a specification S, an implementation Impl, and
their trace sets [[S]] and [[Impl]], we have Impl conf S iff [[Impl]] �acts(S) � [[S]], where
acts(S) is the set of all activities of S and � is the filter operator, i.e., t �X (or T �X)
retains only the elements of X in t (or T ) while preserving their order.

Based on this formal definition of conformance, we may finally define choreography
conformance.

Definition 3.3.3 (Choreography conformance). Given a choreography C with n roles,
Ri = nproj(C, i), and an implementation Impl with n peers, Pi, Impl conforms to C,
denoted Impl conf C, iff the following two conditions hold:
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i) Pi conf Ri, for every i = 1..n (local conformance),

ii) (P1 ‖ P2 ‖ . . . ‖ Pn) conf C (global conformance).

Test Architecture

Using passive testing in our work, testing can be done continuously and the peers in a
collaboration can evolve dynamically. Such a seamless monitoring activity is a less costly
activity as it does not require to make the IUT unavailable during the testing process.
Each peer is monitored at a specific PO to collect all incoming and outgoing messages.
The setting up of POs, one for each peer, is guided by the ability to capture all the input
and output messages of the observed peers. The captured messages that do not concern
the testing choreography will be discarded using filtering (Def. 3.3.2).

Communication between peers is performed through SOAP messages. When a SOAP
message is sent (or received) by a peer of the IUT, an observation is recorded in the log
file. A Chor interaction c[i,j] means that a message c is transferred from Ri to Rj . As a
consequence, an observation contains the sender, the receiver and the type of the SOAP
message. To ease the reconstruction of the order between observations of different logs
li, an observation also contains the time of the observation. In order to collect the SOAP
messages exchanged between the peers of the implementation, we have extended Apache
ODE, a BPEL compliant WS orchestration engine. This choice may cause a limitation by
considering only the monitoring of services which are implemented in BPEL. To overcome
this issue, we rely on wrappers for peers not implemented in BPEL.

3.4 Realizability Checking of Choreographies

[IP33] – work done in the context of collaborations with colleagues from INRIA Rhône-Alpes.

Overview

Our approach for checking the realizability of choreographies is described in Figure 3.3.
We begin with a BPMN 2.0 choreography, described in a Choreography Diagram, that is
transformed into a workflow model (see Chap. 1) where nodes correspond to BPMN 2.0 basic
choreographic interactions and structuring operators. This workflow model is then encoded
into LOTOS NT (LNT) [Champelovier et al., 2010], an improved version of the LOTOS
value-passing process algebra with imperative programming structuring mechanisms and
functional style data type definitions. We also generate encodings for the projected peers
and their composition. These encodings are declarative, as opposed to an ad-hoc projection
algorithm operating at the model level. From the choreography and peer composition
encodings we respectively retrieve the expected choreography and the peer composition
models (LTS), and finally, we check if the choreography is realizable by comparing them.
In case it is not, we return a counter-example. Our approach is fully tool supported using
tools that we have developed for model retrieval (BPMN2Py) and LNT encoding (Py2LNT).
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Figure 3.3: Realizability checking of choreographies – overview

At the same time than encoding, a CADP SVL script is generated that automates all
further steps using CADP tools, namely lnt.open to retrieve LTSs from LNT descriptions
and bcg.open to perform behavioral equivalence checking.

BPMN 2.0

The Business Process Modeling Notation, BPMN [OMG, 2011], is a visual notation that
suits well the needs for the abstract specification of business processes and their interactions,
including future service implementations. BPMN 1.x supported choreography specification
through an interconnected interface model (Collaboration Diagrams) only. In addition
to Collaboration Diagrams, BPMN 2.0 (BPMN in the sequel) introduces Choreography
Diagrams to support an interaction model.

The building blocks of BPMN Choreography Diagrams are choreography tasks, one-way
or two-way interactions between peers with one of them being the initiator. This corresponds
closely to the abstraction of choreography specification atoms given in Chapter 1. However,
in BPMN, a choreography task may have an internal marker to denote if, and how, the
related interaction (one or two message exchanges) is repeated. BPMN enables to describe
control flows using sequence and (diverging or converging) gateways for more complex
behaviors: exclusive gateways (decision, alternative paths), inclusive gateways (inclusive
decision, alternative but also parallel paths), parallel gateway (creation and merging of
parallel flows), and event-based gateway (choice based on events, i.e., message reception or
timeout, alike BPEL pick construct).
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Encoding

The encoding of a BPMN choreography (Main) follows a state machine pattern, where
states are LNT processes that correspond to the choreography constructs, i.e., nodes in
the workflow model. Our encoding (see [IP33] for technical details) supports the main
BPMN Choreography Diagram constructs, i.e., choreography tasks, including their loop
kind and value, and (diverging and converging) exclusive, parallel, and inclusive gateways.

A benefit of LNT is that it makes it easier to retrieve models for the peers and
their composition. For each peer Pi in a choreography, the encoding of Pi is achieved
declaratively using the hiding operator of LNT: all interactions but for the ones in which
Pi is a participant are hidden in Main. Finally, the composition of all peers is defined as
the parallel composition of the peer encodings with synchronizing on shared interactions.

Realizability Checking

Realizability checking is achieved in two steps. First, using the LNT semantics, it is possible
to retrieve the LTS (explicit models) for the choreography and for the peer composition from
their encodings (implicit models). In the later case, τ -reduction is performed beforehand
on peer models to remove interactions hidden in their encodings. Realizability is then
checked using behavioral equivalence between the choreography and the peer composition
models. For this we use bisimulation and trace equivalences. As a side-effect of behavioral
equivalence checking, a counter-example is returned if the choreography is not realizable.

Asynchronous communication is not directly supported by LNT. Therefore, to check
for realizability in an asynchronous framework, we generate additional code for bounded
FIFO buffers and accordingly we change the communication architecture of the peer
composition encoding in order to make peers communicate through these buffers. The
buffer size is a parameter of the encoding tool. The user may work using different sizes or
check for synchronizability [Basu and Bultan, 2011] of the choreography. In the later case,
verification can be done on the synchronous version of the system and the results hold for
the asynchronous case.

3.5 Repair of Service Orchestrations

[IP27,IP28,IP29,S3] – work done in the context of collaborations with colleagues from
Concordia University, Canada.

Overview

Our repair technique is integrated in a larger framework for composition using planning
that we have implemented in Java, PGA (Planning Graph with Adaptation, Fig. 3.4).
PGA includes a composition module (Java implementation of the standard graph plan-
ning algorithm [Blum and Furst, 1997]), used to build initial compositions and perform
recomposition, a change module, used to apply change on a composition possibly breaking
it, and a repair module, used to perform repair on broken compositions. PGA can read
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an OWL file describing ontology concepts and a set of annotated WSDL interfaces (we
rely on simple extension mechanisms instead of full-fledged SAWSDL [W3C, 2007] for
this). PGA is also connected to the WSC platform2 which is used to generate BPEL
orchestrations from XML descriptions of compositions. For the time being, PGA does not
include pycompose (Sec. 2.5). This is planned as a future extension of the framework. We
have applied PGA on big-size benchmarks generated by the WSC testset generator, a tool
that enables to compare service composition algorithms by generating sets of semantically
annotated service interfaces. The experiments have shown that using repair we get results
of the same quality than with recomposition (in length, number of used services, and
distance wrt. the original composition before change) but in a shorter computation time.

Models

We build on service composition using planning graphs, which, in absence of conversations,
can be modeled as a tuple (W,Din, Dout), where W is a set of services, Din are provided
inputs, and Dout are expected outputs. Services correspond in to planning actions A
where for each a in A, we use in(a) to denote the inputs of a (i.e., pre(a) in planning
theory, Chap. 1) and out(a) to denote the outputs of a (i.e., effect+(a) in planning theory,
Chap. 1). As a result of the composition process, we get a planning graph G (with its
alternating proposition layers Pi and actions layers Ai) and a selected plan π. Service
composition should be considered in a world that is subject to change. Hence, whether it
is due to services appearing or disappearing (W ′), to change in the given inputs (D′in), or
to new goals or goals getting out of interest (D′out), we get a new composition problem
(W ′, D′in, D

′
out).

2http://ws-challenge.georgetown.edu/wsc09/software.html
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After impacting change, we get a partial planning graph G with a set of Broken Pre-
conditions BPGm∈[1,n], BP

G
m ⊆ Pi. BPGn corresponds to unsatisfied goals, while BPGm∈[1,n−1]

are inputs of actions in Am+1 that are no longer available. Let A be a set of actions,
we denote out(A) (resp. in(A)) the set

⋃
a∈A out(a) (resp. the set

⋃
a∈A in(a)). We

have BPGm∈[1,n−1] = {p ∈ in(Am+1)|p 6∈ Din
⋃
k∈[1,m] out(Ak)} and BPGn = {p ∈ Dout|p 6∈

Din
⋃
k∈[1,n] out(Ak)}. We may also focus on a given plan, say π. Let πi be the set of actions

in π at step m. Due to π computation with the planning graph we have πm ⊆ Am. We have
then broken preconditions related to π, BP πm∈[1,n−1] = {p ∈ in(πm+1)|p 6⊆ Din

⋃
k∈[1,m]

out(πk)} and BP πn = {p ∈ Dout|p 6∈ Din
⋃
k∈[1,n] out(πk)}. Note that BPGm and BP πm are

incomparable.

Repair Principles

The planning graph for the initial composition problem, even if broken, still contains
parts that are valid for the new composition problem. Of course, if π is not broken
(∀m ∈ [1, n], BP πm = ∅) we have nothing to do. π is still a valid solution, even in a broken
planning graph. Else, we run our algorithm for BP π (hence, in the sequel, we will use BPm
for BP πm for simplicity). Note that if π is broken but G is not (∀m ∈ [1, n], BPGm = ∅) then
there is still at least a solution in G, which we may retrieve using backtracking. However,
this may yield a solution which is very different from π. Running our algorithm we try
first to get a resembling solution. If this fails, any other solution will be found too by the
algorithm.
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Figure 3.5: Broken preconditions at level m, m ≤ n (basic repair)

For a proposition level where BPm is not empty (Fig. 3.5 (a)), we search for a set of
candidate services A which can produce BPm and insert them into action level m (Fig. 3.5
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(b)). This promotes shorter repair solutions. Sometimes, the lower proposition level Pm−1

does not contain all the inputs needed by A. We then insert A into a new action level
m+ 1 (Fig. 3.5 (c)). By doing this, we can use more propositions since Pm−1 ⊆ Pm but
increase the plan length by one.
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Figure 3.6: Broken preconditions at level m, m < n (degraded repair)

This technique can fail if we cannot find a set of services A that produce all the
broken preconditions in BPm. As a solution we may degrade our basic repair principle.
If it is not the goal layer (m < n), we remove the unrepairable part (Fig. 3.6). New
broken preconditions may appear at level m + 1 and will be treated in a next iteration.
If it is the goal layer (m = n), then there is no solution, neither with repair nor with
recomposition. Degraded repair increases computation time wrt. basic repair since it gets
closer to recomposition. Still, it enables to find a solution whenever it exists.

Repair is a greedy search algorithm. We use two heuristic functions, (3.1) and (3.2), to
select the best services. The evaluation depends on the layer where w is to be added. At
the highest level n, we define:

f1(w,G,m) =
|BPn ∩ out(w)|

maxΩ
× 2 +

|in(w) ∩ Pm−1|
maxPi

− |in(w)− Pm−1|
maxPe

, if m = n; (3.1)

where |BPn ∩ out(w)| is the number of unimplemented goals that can be implemented
by w; |in(w) ∩ Pm−1| is the number of w inputs that can be provided by propositions in
Pm−1; |in(w)− Pm−1| is the number of w inputs that cannot be provided by propositions
in Pm−1. This set needs to be added into BP if w is added. maxΩ, maxPi, and maxPe are
the maximum value of the nominators in the neighborhood respectively to normalize each
term. The first term is given a weight of 2 to increase its significance.

If w is to be added in another layer (m < n) then the evaluation function is:

f2(w,G,m) = f1(w,G,m) +

∑
i∈[m,n] |BPi ∩ out(w)|

maxBP
, if m < n; (3.2)

Compared to (3.1), the added term (
∑

i∈[m,n] |BPi∩out(w)|) is the number of the broken
propositions in the level Pm and above that can be satisfied by w outputs. maxBP is the
maximum value in the neighborhood to normalize each term. To ensure repair termination,
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we do not select services that would reproduce the same set of broken preconditions, nor
do we select a service that has been removed in degraded mode.
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4
Conclusions and Perspectives

In this document, I have presented my recent contributions to composite systems devel-
opment, focusing on in-the-large development, since I believe that it is at the same time
the most complex and added value activity in software construction. Through techniques
for the automatic construction, adaptation, testing, and repair of compositions, I try to
support a vision where software is more dynamic, being built on-demand from end-user
requirements and modified during execution to support change in context and needs. In
order to foster the automation and the applicability of the proposed techniques, I rely
both on formal models and on their connection to real-life interface and implementation
languages, using a layered formal model transformation approach. Further, most of the
techniques presented here have been applied on the state-of-the-art composite system
infrastructure, namely, (Web) services.

Looking back on the contribution lecture grid that has been given in the Introduction
of this document (given again in Tab. 4.1), one may see, in practice, the application of the
principle stating that there is no universal formal model. Experience with different models
has brought benefits and drawbacks.

Transition systems (LTSs) are a very simple model that benefits from important tool
support. Their force is in their simplicity, and they perfectly suit the needs for abstract
components and service behavioral interface descriptions. Through their symbolic extensions
(STSs), they are amenable to the modeling of more expressive interfaces descriptions and
to orchestration specification, supporting data and complex related conditions. However,
whenever it comes to the implementation of software entities from transition system models,
their intrinsic implicit (interleaving) parallelism falls short. Process algebras (PAs) are
mainly used as a frontend to transition systems, thanks to their expressive composition
operators. As a true concurrence model, event structures (LESs) ease the implementation
of models in languages with explicit parallelism, such as BPEL. However, event structures
clearly lack an important tool support with reference to mainstream models (LTSs, PNs).

75
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Table 4.1: Contributions - lecture grid

issue DLin DM in WM DMout DLout

adaptation and composition

2.2 component adaptation WWF
LTS LTS LTS

WWF
LTS PN LTS

2.3 orchestration adaptation WSDL+BPEL STS PA STS

BPEL2.4 choreography adaptation
SAWSDL+BPEL LTS LTS LTS
WF LES PN LES

2.5 orchestration composition WF GP GP GP
verification and repair

3.2 orchestration testing ABPEL STS SET STC SOAP
3.3 choreography testing Chor+SOAP logs TSet TSet n/a n/a
3.4 choreography checking BPMN 2.0 WF PA, LTS n/a n/a
3.5 orchestration repair WSDL+OWL(+GP) GP GP GP BPEL

One force of Petri nets (PNs) is the strong relation they have with workflow languages.
Further, Petri nets support natively both an interaction-vision and a resource-oriented
vision of components and services, while transition systems would do indirectly (through
resource reification into LTSs or through data extension). With their different semantics,
Petri nets can also play a central role in between other models (LTSs, LESs). Petri nets
have as many extensions as transition systems, including data extensions (e.g., colored
Petri nets). Finally, graph planning (GP). It is somehow on a different level. It does not
play the model role (the propositional world and the set of actions operating on this world
do). It is rather a technique whose force is in building, at once, all the solutions to some
problem (up to some length). Using this property, it was possible to develop composition
repair as an alternative to complete recomposition.

In the sequel, I discuss some perspectives of my work.

BPMN 2.0 choreography verification framework. Important issues in choreography-
oriented design are realizability and conformance. These issues have been well studied
for MSC and UML collaboration diagrams. One of my objectives is to study them on a
more expressive language, the new BPMN 2.0 standard [OMG, 2011]. A first step has
been done with a tool-supported technique for realizability checking [IP33] (Sect. 3.4).
A perspective is to extend the subset of BPMN choreographies taken into account, with
hierarchical structuring aspects (sub-choreographies) and, as a consequence, possibly taking
into account realizability checking in a compositional way. A strong notion of realizability,
based on behavioral equivalence, has been used in [IP33]. A second perspective is to
apply looser realizability notions [Kazhamiakin and Pistore, 2006] based on pre-orders and
partial-orders.

Composition and adaptation in a true concurrency framework. In a recent
work [S2] (Sect. 2.4), I have used LES for (distributed) service composition and adaptation.
These models support a true concurrency semantics and ease adaptor and orchestrator
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distribution and implementation. However, a limit is that service and requirement con-
versations may not present cyclic behaviors. Further, LES are very simple models as
far as interaction description is concerned. Occurrence nets, resulting from Petri net
unfolding [Esparza et al., 2002, Hayman and Winskel, 2008], enable to benefit from Petri
net expressiveness while avoiding state explosion issues resulting from cyclic behaviors. A
perspective is therefore to study the application of Petri net unfolding to service composition
and adaptation in a true concurrency framework. Recent work has addressed the combina-
tion between Petri net unfolding and planning [Hickmott et al., 2007, Bonet et al., 2008],
hence could serve as a basis, at least for the composition process.

Composition and adaptation at the signature, behavior, and semantic levels.
We have seen in Section 2.1 that behavioral and signature adaptation are converging into
composed adaptation approaches. Still, the integration with expressive algebraic semantic
adaptation approaches [Morel and Alexander, 2004, Hemer, 2005] is to achieve. A first
perspective concerns the combination of these approaches in order to achieve composition
and adaptation at the signature, behavior, and semantic levels. In a possible combination
with the perspectives presented above, this could yield using data extensions of Petri
nets, such as colored Petri nets [Jensen et al., 2007], for composition and adaptation. The
same kind of symbolic techniques that I used for testing in [IP26,IP31] (Sect. 3.2) could
be used here to avoid both over-approximation and state explosion issues. However,
following a behavioral type perspective, another perspective is the study of composition
and adaptation through the embedding of composition/adaptation processes and service
descriptions – including signatures, behaviors, and semantics – into SMT solvers or
automated theorem provers.

Towards eternal peer composition. In new nomad uses, collaborations between peers
(choreographies) are to evolve dynamically, with an impact on the peers participating
in the collaboration, on global collaboration properties, and on local peer expectations.
Typical application domains are social services (i.e., a service market grounded on so-
cial networks) and virtual enterprises. This makes complex (and quite unrealistic) an a
priori vision of composition and test of compositions. Following the model-at-runtime
and runtime verification visions, a perspective is to study the combination of test, di-
agnosis, and adaptation techniques in an online approach supporting such a dynamic
vision of collaborations. An interesting starting point is the combination of diagnosis
and planning [Chanthery and Pencolé, 2009]. Additionally, in a true dynamic perspec-
tive, behavioral models may not always come for granted with the entities that compose
the systems. In such a case, passive techniques for the automated retrieval of behav-
ioral descriptions [Musaraj et al., 2010, van der Aalst, 2011, Steffen et al., 2011] should be
used. Due to the above mentioned perspectives on true concurrency and support for
rich data and semantic descriptions, a perspective concerns the combination of behavioral
model retrieval techniques such as [Esparza et al., 2010] for Petri nets (and concurrency)
and [Jonsson, 2011] for behavioral models extended with data. This work has begun in
the context of H. N. Nguyen PhD thesis.

Resource-centric vs. message-centric composition. My work focused on functional
service composition in order to achieve some designer or end-user requirements. The
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underlying infrastructure is mainly the Web service one, as proposed by W3C. Still, new
domains emerge with an important end-user need for automatic / helped composition in a
distributed context: personal information management in relation with e-governance, open
data access and composition (as promoted by important public actors such as the EC), use
of social networks for the exchange and composition of human services, scientific workflows,
etc. A major element in these frameworks is the importance of data in compositions.
At the infrastructure level, Web services (RPC/SOAP) appear to be too heavyweight.
Major actors (such as Amazon or Google) hence promote the REST architecture, more
lightweight and adapted to data composition. If there are actually languages for data
service composition (mashup languages such as Yahoo! pipes), the relative development
processes are still mainly manual. A perspective is to study verification, composition,
and adaptation techniques with a data/resource-centric perspective and target the REST
architecture. This work has begun in the context of the ANR PIMI project and R. Khefifi
PhD thesis.
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Publications

I give here the list of my publications (journal articles, book chapters, conference and
workshop papers). Most of them are available online:
http://www.lri.fr/~poizat/publications year.html.
Selection rates are indicated when known. The publications with an underlined index are
the ones selected to be given in Appendix to this document. National publications, technical
reports, and editions of special issues or proceedings can be found in the above-mentioned
Web page.

Journal Articles

A6 Radu Mateescu, Pascal Poizat, and Gwen Salaün. Adaptation of Service Protocols using
Process Algebra and On-the-Fly Reduction Techniques. IEEE Transactions on Software
Engineering, xx(x):xxx–xxx. IEEE Comp. Soc., 2011. (to appear, available in the
journal online PrePrint section).

A5 Carlos Canal, Pascal Poizat, and Gwen Salaün. Model-Based Adaptation of Behavioural
Mismatching Components. IEEE Transactions on Software Engineering, 34(4):546–563.
IEEE Comp. Soc., 2008.

A4 Christian Attiogbé, Pascal Poizat, and Gwen Salaün. A Formal and Tool-Equipped Approach
for the Integration of State Diagrams and Formal Datatypes. IEEE Transactions on Software
Engineering, 33(3):157–170. IEEE Comp. Soc., 2007.

A3 Pascal Poizat and Jean-Claude Royer. A Formal Architectural Description Language based
on Symbolic Transition Systems and Modal Logic. Journal of Universal Computer Science
(J.UCS), 12(12):1741–1782. Springer, 2006.

A2 Carlos Canal, Juan Manuel Murillo, and Pascal Poizat. Software Adaptation. L’objet,
12(1):9-31, 2006. Special Issue on Coordination and Adaptation Techniques for Software
Entities. introduction by the guest-editors
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A1 Christine Choppy, Pascal Poizat, and Jean-Claude Royer. The Korrigan Environment.
Journal of Universal Computer Science (J.UCS), 7(1):19-36. Special Issue on Tools for
System Design and Verification, 2001

Book Chapters

BC6 Pascal Poizat and Thomas Vergnaud. Distributed Systems: (vol. 2) Models and Analysis,
chapter 5 - Architecture Description Languages. ISTE, Wiley, 2011.

BC5 Pascal Poizat. Software Specification Methods: an Overview Using a Case Study, chapter 12
- SDL. ISTE, Hermes Science Publishing, 2006. new edition of [BC1]

BC4 Marc Frappier, Henri Habrias, and Pascal Poizat. Software Specification Methods: an
Overview Using a Case Study, chapter 19 - A Comparison of the Specification Methods.
ISTE, Hermes Science Publishing, 2006.

BC3 Henri Habrias, Pascal Poizat, and Marc Frappier. Software Specification Methods: an
Overview Using a Case Study, chapter 20 - Glossary. ISTE, Hermes Science Publishing, 2006.

BC2 Pascal Poizat and Thomas Vergnaud. Méthodes formelles pour les systèmes répartis et
coopératifs, chapter 5 - Langages de description d’architecture. Hermes, Lavoisier, 2006.

BC1 Pascal Poizat. Software Specification Methods. An Overview Using a Case Study, chapter
9 - SDL: a Language based on Extended Finite State Machines with Abstract Data Types.
Formal Approaches to Computing and Information Technology (FACIT), Springer. out of
print. 2000.

Conference and Workshop Proceedings

IP33 Pascal Poizat and Gwen Salaün. Checking the Realizability of BPMN 2.0 Choreographies.
In Proceedings of the ACM Symposium on Applied Computing (SAC 12). ACM, 2012. (to
appear).

IP32 Huu Nghia Nguyen, Pascal Poizat and Fatiha Zäıdi. Passive Conformance Testing of Service
Choreographies. In Proceedings of the ACM Symposium on Applied Computing (SAC 12).
ACM, 2012. (to appear).

IP31 Lina Bentakouk, Pascal Poizat, and Fatiha Zäıdi. Checking the Behavioral Conformance of
Web Services with Symbolic Testing and an SMT Solver. In Proceedings of the International
Conference On Test and Proofs (TAP 11), volume 6706 of Lecture Notes in Computer Science,
pages 33–50. Springer, 2011.

IP30 Pascal Poizat and Yuhong Yan. Adaptive Composition of Conversational Services through
Graph Planning Encoding. In Proceedings of the International Symposium On Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA 10), volume 6416 of
Lecture Notes in Computer Science, pages 35–50. Springer, 2010.

IP29 Yuhong Yan, Pascal Poizat, and Ludeng Zhao. Repairs vs. Recomposition for Broken Service
Compositions. In Proceedings of the International Conference on Service Oriented Computing
(ICSOC 10), volume 6470 of Lecture Notes in Computer Science, pages 152–166. Springer,
2010. selection rate: 15%

IP28 Yuhong Yan, Pascal Poizat, and Ludeng Zhao. Self-Adaptive Service Composition through
Graphplan Repair. In Proceedings of the IEEE International Conference on Web Services
(ICWS 10), pages 624–627, 2010. work in progress track
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IP27 Yuhong Yan, Pascal Poizat, and Ludeng Zhao. Repairing Service Compositions in a Changing
World. In selected papers from the 8th ACIS conference on Software Engineering Research,
Management & Applications (SERA 10), volume 296 of Studies in Computational Intelligence,
pages 17–36. Springer, 2010. selection rate: 14%

IP26 Lina Bentakouk, Pascal Poizat, and Fatiha Zäıdi. A Formal Framework for Service Orches-
tration Testing based on Symbolic Transition Systems.. In Proceedings of the 21th IFIP
International Conference on Testing of Communicating Systems (TESTCOM’09), volume
5826 of Lecture Notes in Computer Science, pages 16–32. Springer, 2009. selection rate: 35%

IP25 Radu Mateescu, Pascal Poizat, and Gwen Salaün. Adaptation of Service Protocols using
Process Algebra and On-the-Fly Reduction Techniques. In Proceedings of the International
Conference on Service Oriented Computing (ICSOC 08), volume 5364 of Lecture Notes in
Computer Science, pages 84–99. Springer, 2008. selection rate: 21%

IP24 Sandrine Beauche and Pascal Poizat. Automated Service Composition with Adaptive
Planning. In Proceedings of the International Conference on Service Oriented Computing
(ICSOC 08), volume 5364 of Lecture Notes in Computer Science, pages 530–537. Springer,
2008. short papers selection rate: 34%

IP23 Tarek Melliti, Pascal Poizat, and Sonia Ben Mokhtar. Distributed Behavioural Adaptation
for the Automatic Composition of Semantic Services. In Proceedings of the International
Conference on Fundamental Approaches to Software Engineering (FASE 08), volume 4961 of
Lecture Notes in Computer Science, pages 146–162. Springer, 2008. selection rate: 26%

IP22 Javier Cubo, Gwen Salaün, Carlos Canal, Ernesto Pimentel, and Pascal Poizat. A Model-
Based Approach to the Verification and Adaptation of WF/.NET Components. In Proceedings
of the International Workshop on Formal Aspects of Component Software (FACS’07), Elec-
tronic Notes in Theoretical Computer Science, volume 215, pages 39–55, 2008.

IP21 Radu Mateescu, Pascal Poizat, and Gwen Salaün. Behavioral Adaptation of Component
Compositions based on Process Algebra Encodings. In Proceedings of the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 07), pages 385–388.
ACM,IEEE, 2007. short papers selection rate: 24%

IP20 Javier Cubo, Gwen Salaün, Carlos Canal, Ernesto Pimentel, and Pascal Poizat. Relating
Model-Based Adaptation and Implementation Platforms: A Case Study with WF/.NET 3.0.
In Proceedings of the Twelfth International Workshop on Component-Oriented Programming
(WCOP’07), pages 9–13, 2008.

IP19 Serge Haddad and Pascal Poizat. Transactional Reduction of Component Compositions.
In Proceedings of the IFIP International Conference on Formal Methods for Networked and
Distributed Systems (FORTE 07), volume 4574 of Lecture Notes in Computer Science, pages
341–357. Springer, 2007. selection rate: 33%

IP18 Pascal Poizat and Gwen Salaün. Adaptation of Open Component-based Systems. In
Proceedings of the IFIP International Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS’07), volume 4468 of Lecture Notes in Computer Science,
pages 141–156. Springer, 2007. selection rate: 38%

IP17 Pascal Poizat, Gwen Salaün, and Massimo Tivoli. An Adaptation-based Approach to
Incrementally Build Component Systems. In Proceedings of the International Workshop on
Formal Aspects of Component Software (FACS’06), Electronic Notes in Theoretical Computer
Science, volume 182, pages 155–170, 2006. selection rate: 62%
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IP16 Pascal Poizat, Gwen Salaün, and Jean-Claude Royer. Bounded Analysis and Decomposition
for Behavioural Descriptions of Components In Proceedings of the IFIP International
Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS’06),
volume 4037 of Lecture Notes in Computer Science, pages 33–47. Springer, 2006. selection
rate: 31%

IP15 Carlos Canal, Pascal Poizat, and Gwen Salaün. Synchronizing Behavioural Mismatch
in Software Composition In Proceedings of the IFIP International Conference on Formal
Methods for Open Object-Based Distributed Systems (FMOODS’06), volume 4037 of Lecture
Notes in Computer Science, pages 63–77. Springer, 2006. selection rate: 31%

IP14 Sebastian Pavel, Jacques Noyé, Pascal Poizat, and Jean-Claude Royer A Java Implementation
of a Component Model with Explicit Symbolic Protocols In Proceedings of the International
Workshop on Software Composition (SC’05), volume 3628 of Lecture Notes in Computer
Science, pages 115–124. Springer, 2006. selection rate: 32%

IP13 Gwen Salaün and Pascal Poizat. Interacting Extended State Diagrams. In Proceedings
of the International Workshop on Semantic Foundations of Engineering Design Languages
(SFEDL’04), Electronic Notes in Theoretical Computer Science, 115:49-57. 2005 selection
rate: 66%

IP12 Olivier Maréchal, Pascal Poizat, and Jean-Claude Royer. Checking Asynchronously Com-
municating Components using Symbolic Transition Systems. In Proceedings of Distributed
Objects and Applications. On the Move to Meaningful Internet Systems 2004: CoopIS, DOA,
and ODBASE: OTM Confederated International Conferences (DOA’04), volume 3291 of
Lecture Notes in Computer Science, pages 1502–1519. Springer, 2004. selection rate: 25%

IP11 Marc Aiguier, Fabrice Barbier, and Pascal Poizat. A Logic with Temporal Glue for Mixed
Specifications. In Proceedings of the International Workshop on Foundations of Coordination
Languages and Software Architectures (FOCLASA’03), Electronic Notes in Theoretical
Computer Science, 97:155-174. 2004

IP10 Christian Attiogbé, Pascal Poizat, and Gwen Salaün. Specification of a Gas Station using
a Formalism integrating Formal Datatypes within State Diagrams. In Proceedings of
the International Conference on Formal Methods for Parallel Programming: Theory and
Applications (FMPPTA’03). IEEE Computer Society Press. 2003

IP9 Christian Attiogbé, Pascal Poizat, and Gwen Salaün. Integration of Formal Datatypes within
State Diagrams. In Proceedings of the International Conference on Fundamental Approaches
to Software Engineering (FASE’03), volume 2621 of Lecture Notes in Computer Science,
pages 341–355. Springer, 2003. selection rate: 22%

IP8 Michel Allemand, Christian Attiogbé, Pascal Poizat, Jean-Claude Royer, and Gwen Salaün.
SHE’S Project: a Report of Joint Works on the Integration of Formal Specification Techniques.
In Proceedings of the International Workshop on Integration of Specification Techniques with
Applications in Engineering (INT’02). 2002

IP7 Christine Choppy, Pascal Poizat, and Jean-Claude Royer. Formal Specification of Mixed
Components with Korrigan. In Proceedings of the Asia-Pacific Software Engineering Con-
ference (APSEC’01). IEEE Computer Society Press. pages 169–176. 2001 selection rate:
30%

IP6 Christine Choppy, Pascal Poizat, and Jean-Claude Royer. Specification of Mixed Systems in
Korrigan with the Support of an UML-Inspired Graphical Notation. In Proceedings of the
International Conference on Fundamental Approaches to Software Engineering (FASE’01),
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volume 2029 of Lecture Notes in Computer Science, pages 124–139. Springer, 2001 selection
rate: 30%

IP5 Christine Choppy, Pascal Poizat, and Jean-Claude Royer. A Global Semantics for Views.
In Proceedings of the International Conference on Algebraic Methodology And Software
Technology (AMAST’00), volume 1816 of Lecture Notes in Computer Science, pages 165–180.
Springer, 2000. selection rate: 55%

IP4 Christine Choppy, Pascal Poizat, and Jean-Claude Royer. Integration and Composition
of Static and Dynamic ”Views”: Unifying Approach to Complex System Specification. In
Proceedings of the Workshop on Integration of Specification Techniques with Applications in
Engineering (INT’00), Technische Universitat Berlin, Bericht-Nr. 2000/04, ISSN 1436-9915,
pages 12-20. 2000

IP3 Pascal Poizat, Christine Choppy, and Jean-Claude Royer. From Informal Requirements to
COOP: A Concurrent Automata Approach. In Proceedings of the World Congress on Formal
Methods in the Development of Computing Systems (FM’99), volume 1709 of Lecture Notes
in Computer Science, pages 939-962. Springer, 1999. selection rate: 36%

IP2 Henri Habrias, Pascal Poizat, and Jean-Yves Lafaye. A Study of Collaborative Work:
Answers to a Test on Formal Specification in B. In Proceedings of the World Congress on
Formal Methods in the Development of Computing Systems (FM’99), volume 709 of Lecture
Notes in Computer Science,pages 1856-1857. Springer, 1999. long version (16p) presented at
ZUM’98 Education Session.

IP1 Pascal Poizat, Christine Choppy, and Jean-Claude Royer. Concurrency and Data Types: a
Specification Method. An Example with LOTOS. In Selected Papers of the 13th International
Workshop on Recent Trends in Algebraic Development Techniques (WADT’98), volume 1589
of em Lecture Notes in Computer Science, pages 276–291. Springer, 1999. selection rate:
49% from the papers selected for the workshop

Others

S3 Yuhong Yan, Pascal Poizat and Min Chen. Repair of Service Compositions as an Adaptation
to Change. submitted (journal).

S2 Pascal Poizat and Paraskevi Zerva. Distributed Service Composition with Event Structures.
to be submitted.

S1 Rania Khefifi, Pascal Poizat and Fatiha Säıs. PI2M: a Flexible and Contextual Personal
Information Management System. to be submitted.
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Curriculum Vitæ

Situation and History

Since September, 2001, I am an associate professor1 at the University of Evry Val d’Essonne
(Paris Metropolitan Area), France. I first developed my research activity within the IBISC
(ex-LaMI) laboratory, working on topics related to composite system design and verification.
During two years, 2006–2008, I was an invited researcher in the ARLES project-team at
INRIA Paris-Rocquencourt, France. The expertise of this team is both on formal aspects
related to software architectures, and on their relation with and implementation in efficient
middleware. At this occasion, I directed my research activity towards issues related to
the actual implementation of software architectures, namely Web services. In this field, I
tackled how formal methods could help, in practice, both designers and end-users, in their
service orchestration duties. This led to proposals for software adaptation and automated
composition (Chap. 2). In September, 2008, going back from INRIA, I moved to the
LRI laboratory, more precisely in the Formal Testing and System Exploration (ForTesSE)
team, whose expertise is on model-based testing, with a recent focus on testing distributed
systems. I complemented at this occasion the cycle of composite system development,
namely with testing and repair techniques for service composition (Chap. 3).

Academic Positions

• 1997– 2000, PhD with national grant (moniteur), University of Nantes ;

• 2000–2001, temporary assistant professor (ATER 100%), University of Nantes ;

• since 2001, associate professor, University of Evry Val d’Essonne.

1This means half-time teaching and half-time doing research. Some administrative duties (managing a
cursus) are also part of an associate professor’s work.
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Mobility

I did a mobility between my PhD and my associate professor position. During 2006–2008,
I was on-the-move (“délégation”) in the ARLES project-team at INRIA. In September,
2008, my research affiliation changed from IBISC (Evry) to LRI (Orsay). I have also been
invited for short periods (one week) at the Universities of Extremadure (2005) and Málaga
(2005, 2007, 2009), Spain.

Diplomas and Titles

• Sept. 1997 – Dec. 2000 : PhD in Computer Science (mention “très honorable”)
KORRIGAN : un formalisme et une méthode pour la spécification formelle et struc-
turée de systèmes mixtes (KORRIGAN: a formalism and a method for the structured
formal specification of mixed systems)
defended on December 18th, 2000, in front of the jury : Frédéric Benhamou (president,
Univ. of Nantes, France), Maritta Heisel (reporter, Univ. of Magdebourg, Germany),
Gianna Reggio (reporter, Univ. of Genes, Italy), Michel Lemoine (examiner, ON-
ERA Toulouse, France), Christine Choppy (PhD director, Univ. Paris 13, France),
Jean-Claude Royer (co-advisor, Univ. of Nantes, France)
prepared at the University of Nantes, IRIN (now LINA) laboratory ;

• 1995 : Research Master (2nd year) in Computer Science (ranked 1st, mention “bien”)
Applications de la réécriture de termes aux modèles à objets (Applications of term
rewriting to object models)
prepared at the University of Nantes, IRIN (now LINA) laboratory ;

• 1994 : Master (1st year) in Computer Science (mention “assez bien”) - University of
Nantes ;

• 1993 : Licence in Computer Science (mention “assez bien”) - University of Nantes ;

• 1992 : DUT Informatique - University of Nantes ;

• 1990 : Baccalauréat, série C - Lycée Albert Camus, Nantes.

Impact of Research on Teaching

Since 2001, but for two years while being on-the-move at INRIA, I have been doing
teaching at different levels (Licence, Master) and for both professional-oriented students
and research-oriented ones.

My research activities have an important impact on my teaching ones. Courses on
design methods and languages such as Merise or the UML, are now usual in most software
engineering cursus. Basing on my experience in relating formal methods and software
engineering, I had the occasion to introduce some flavor of automated verification in courses
on object-oriented design and the on design and development of distributed applications,
in the first and second year of Master. In this context, I have shown to the students the
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impact of erroneous design in modern applications where distribution, communication,
and interaction play an important part. I have then introduced a basic behavioral model
(LTS), different parallelism and communication semantics, and tools for equivalence and
deadlock-freeness checking (CWB, LTSA, CADP). The other way round, students regularly
participated to my research activities, through PhD and Master internships (see below) but
also in earlier years (summer internships in third year of Licence, introduction to research
practical work in the first year of Master), through participation in the development of
research prototypes.

Formal methods have now reached a maturity level for being integrated within software
engineering courses. Still, this should be as transparent and automated as possible. This is
clearly the case for static (data and function related) formal methods based on program
assertions and testing, with tools such as Spec# [Barnett et al., 2011]. I believe that in
the next years a challenge is to leverage dynamic (behavior related) formal methods in
the same way. Transparent background tool support and relation to standard models and
languages is a cornerstone for this.

Administrative Activities

Cursus responsibilities (University of Evry Val d’Essonne)

• director of the third year of licence in computer science, MIAGE cursus (since 2009) ;

• director of the third year of licence in computer science, INFO cursus (2008–2009) ;

• director of the second year of master, complementary competences in computer
science (2004–2006) ;

• deputy director of the second year of master, complementary competences in computer
science (2001–2004).

Recruiting committees and scientific councils

• external member of the recruiting committee for computer science, University of
Nantes (one associate professor position in 2009) ;

• member of the recruiting committee for computer science, University of Evry Val
d’Essonne (temporary assistant professor positions in 2008–2011) ;

• external member of the recruiting committee for computer science, CNAM Paris
(associate professor positions in 2004-2007) ;

• elected member of the recruiting committee for computer science, University of Evry
Val d’Essonne (associate professor positions in 2004-2008) ;

• elected member of the IBISC laboratory council (2006-2008).

Technical commissions
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• member of the hardware/software commission, LRI lab. (since 2008) ;

• member of the documentary commission, INRIA Paris-Rocquencourt (2006–2008) ;

• member of the Web commission, LaMI/IBISC lab. (2001–2006) ;

• webmaster of the LaMI/IBISC lab (2004–2008).

Research Activities

Editions of Journal Special Issues

• co-editor of the special issue “Coordination and Adaptation Techniques”
L’Objet, volume 12, number 1, 2006 ;

• co-editor of the special issue “Software Adaptation”
Journal of Universal Computer Science (J.UCS, Springer), volume 14, number 13,
2008 ;

• co-editor of the special issue on the FOCLASA 2007 workshop
Science of Computer Programming (SCP, Elsevier), volume 76, number 1, 2011 ;

• co-editor of the special issue on the FOCLASA 2008 workshop
Science of Computer Programming (SCP, Elsevier), volume 76, number 8, 2011.

Lecture Boards for Journal Special Issues

• reviewer (2008) for the special issue on FACS’08
Science of Computer Programming (SCP, Elsevier) ;

• reviewer (since 2005, 5 issues) for the special issues on the FOCLASA workshop
Science of Computer Programming (SCP, Elsevier) ;

• reviewer (since 2005, 2 issues) for the special issues on the FSEN conference
Fundamenta Informaticae ;

• reviewer (2008) for the special issue “Architectures Logicielles”
L’Objet ;

• reviewer (2008) for the special issue “Components, Services and Aspects: Techniques
and Tools for Verification”
L’Objet ;

• without being in the lecture board, I regularly make reviewers for regular issues of
journal articles (Computer Languages, Systems & Structures, IEEE Transactions
on Automatic Control, Science of Computer Programming, Technique et Science
Informatiques).
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Organization and Program Committees

• co-president of the PC, co-organizer, and PC member (2004-2007) of the
International Workshop on Coordination and Adaptation Techniques, WCAT, at
ECOOP ;

• co-president of the PC, co-organizer (2007 and 2008) and PC member (2006-
2010) of the International Workshop on the Foundations of Coordination Languages
and Software Architectures, FOCLASA, at CONCUR and then at ICALP ;

• PC member (since 2011) of the CSI International Symposium on Computer Science
and Software Engineering, CSSE ;

• PC member (since 2008) of the IEEE International Conference on e-Business
Engineering, ICEBE (ECORE 2010 rank B) ;

• PC member (since 2009) of the International Conference on Software and Data
Technologies, ICSOFT (ECORE 2010 rank B) ;

• PC member (since 2011) of the IEEE International Conference on Web Services,
ICWS (ECORE 2010 rank A) ;

• PC member (since 2011) of the Doctoral Symposium of the International Conference
on Service-Oriented Computing, ICSOC PhD Symposium ;

• PC member (since 2006) of Conférence nationale sur les Architectures Logicielles
(National Conference on Software Architectures), CAL ;

• also PC member of international workshops (ProVeCS 2007, FACS 2008, SASE
2008, ORGMOD 2009, MOCA 2009, WA-SELF 2008-2009, AVYTAT 2010, WCSI
2010, CAMPUS 2010-2011, Web Service Cup 2010-2011, WS-FMDS 2011) and
national workshops (OCM-SI 2005-2006).

Expertise

• evaluation for a national research-enterprise PhD grant (CIFRE), 2011 ;

• evaluation of a project for the French National Agency for Research (ANR), JCJC
SIMI2 2011 call, 2011 ;

• half-period evaluation of a project for the French National Agency for Research
(ANR), ARPEGE 2008 call, 2010 ;

• evaluation of a project for the French National Agency for Research (ANR),
ARPEGE 2010 call, 2010 ;

• evaluation of a project for the Dutch Organization for Scientific Research (Neder-
landse Organisatie voor Wetenschappelijk Onderzoek, NWO), 2010 ;
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• evaluation of a project for the Dutch Organization for Scientific Research (Neder-
landse Organisatie voor Wetenschappelijk Onderzoek, NWO), 2008 ;

• evaluation of a project for the State-Region Contractual Plan (Contrat de Plan
Etat-Région Lorraine), CPER MISN 2007-2013 call, special theme on systems safety
and security, 2007.

PhD Boards

• European thesis reviewer for the PhD of Javier Cubo Vilalba, DAMASCO -
Discovery, Adaptation and Monitoring of Context-Aware Services and Components,
University of Málaga, Spain, 2010 ;

• European thesis reviewer for the PhD of Aitor Urbieta, Enfoque integrado para el
modelado, emparejamiento y composición sensible al contexto de servicios semánticos,
basado en precondiciones y effectos, orientado a entornos inteligentes (Framework for
the context-aware modelling, discovery, and composition of semantic services, based
on preconditions and effects, for smart environments), University of Mondragón,
Spain, 2010 ;

• examiner for the PhD of Javier Cámara Moreno, Run-Time Behavioural Adaptation
of Components and Services, University of Málaga, Spain, 2009 ;

• European thesis reviewer for the PhD of Leire Etxeberria, Evaluación de atributos
de calidad en ĺıneas de productos software de forma efectiva en costes (Efficient
evaluation of quality attributes for software product lines), University of Mondragón,
Spain, 2008 ;

• examiner for the PhD of Miguel Ángel Pérez Toledano, Titán: un marco de trabajo
para el estudio de la integración de aspectos en sistemas software (Titan: a framework
for the study of aspect integration in software systems), University of Extremadure,
Spain, 2008.

Working Groups and Collaborations

Since 2011 I co-direct with R. Rouvoy (LIFL and INRIA) the COSMAL (Components,
Objects, Services: Models, Architectures and Languages) working group of the CNRS GPL
(Software Engineering) national research group (GDR).

In the last years, I made collaborations with colleagues in other laboratories, and I
participated to several working groups:

• CSE Department, Concordia University, Canada ;

• VASY project-team, INRIA Rhône-Alpes ;

• CNRS Software Engineering national research group (GDR GPL), COSMAL working
group (member of the board, co-direction since 2011) - this working group is made
up of teams in laboratories from all over France ;
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• MeFoSyLoMa (Formal Methods for Software and Hardware Systems) working group
- this working group is made up of teams in laboratories in the Paris metropolitan
area ;

• past collaborations: DI, Università degli Studi dell’Aquila, Italy ; DIS, Università di
Roma ’La Sapienza’, Italy ; LCC, Universidad de Málaga, Spain ; Quercus Group,
Universidad de Extremadura, Spain ; GDR ALP / AFADL and OCM working
groups ; GDR I3 / OCM-SI working group ; GDR Programmation / ELO working
group ; ARLES project-team, INRIA Paris-Rocquencourt, France ; IBISC, Université
d’Evry Val d’Essonne, France ; LAMSADE, Université Paris Dauphine, France ;
LINA, Université de Nantes, France ; LIPN, Université Paris 13, France ; OBASCO
project-team, INRIA Bretagne Atlantique, France ; POP ART project-team, INRIA
Rhône-Alpes, France.

Tutorials and Seminars

I have been invited to present my work at several occasions:

• P. Poizat. Model-Based Software Adaptation. Introduction and Contributions. (sev-
eral versions)

– invited seminar, ADAM project-team, INRIA Lille - Nord Europe, Jan. 2010 ;

– invited seminar, Inf. Syst. Group, IEIS, Technical University of Eindhoven,
Nov. 2009 ;

– NICTA-INRIA/LAAS/LRI meeting, LRI, University Paris Sud, Jul. 2009 ;

• P. Poizat. Testing Web Service Orchestrations.

– invited seminar/doctoral lecture, University of Málaga (Spain), May 2009 ;

• P. Poizat. Model-based Software Adaptation. Open Systems & Semantics.

– invited seminar/doctoral lecture, University of Málaga (Spain), Mar. 2007 ;

• P. Poizat. Adaptation Logicielle. (several versions)

– invited seminar, INRIA Rhône-Alpes, Grenoble, May 2006 ;

– invited seminar, MeFoSyLoMa working group, University Paris 13, May 2006 ;

– invited seminar, ACI FIACRE project meeting, ENST, Feb. 2006 ;

• P. Poizat. Extension of Behaviours with Formal Datatypes.

– invited seminar, University of Extremadure (Spain), Jun. 2005 ;

– invited seminar/doctoral lecture, University of Málaga (Spain), Jun. 2005.

Besides, I have been invited to make a tutorial on the use of script languages at a physics
colloquium:
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• P. Poizat. Shell Scripting for Scientific Programming : the Python example.
International Workshop on Computing for Heavy Ion Physics, Apr. 2005
http://indico.cern.ch/conferenceDisplay.py?confId=a05210

The slides of these tutorials and seminars are available online:
http://www.lri.fr/~poizat/communications.html

Projects

• ANR PIMI – co-writer and scientific leader for the LRI partner
type: French National Agency for Research, VERSO (Future Networks and Services)
partners: Genigraph (leader), INRIA/MERLIN, IRIT/LILaC, IT Sud Paris (ex-
INT), LRI/{Fortesse,IASI}, Montimage, Région Midi-Pyrénées, CTIE
period: 36 months (label 2010, Nov. 2010 – Oct. 2013)
goals: framework for the design and deployment of Personal Information spaces –
definition of PI models and PI usage, data integration and automatic composition of
e-services, trust and security.
URL: n/a

• ANR PERSO – project leader
type: French National Agency for Research, JCJC (Young Researchers Program)
partners: INRIA/ARLES (leader), IBISC, LAMSADE
period: 36 months (label 2007, Nov. 2007 – Oct. 2010)
goals: service composition in pervasive computing – study, analysis and elaboration
of a tool-equipped approach for the composition and adaptation of services, taking
into account the different interface description levels (signature, protocols, quality of
service, semantics) ; monitoring and runtime recomposition of service compositions.
URL: http://anr-perso.ibisc.univ-evry.fr/
(semestrial reports, half-period report, final report, poster, publications)

• CRE SO(MP)2 – member
type: externalized research contract, France Télécom R&D
partners: LIP6 (leader), IBISC, FT R&D
period: 8 months (May 2007 – Dec. 2007)
goals: multi-protocol auction marketplaces – application of service-oriented architec-
tures to auction protocols and Web service choreography adaptation

• RNRT STACS – co-writer and member
type: National Network for Telecommunication Research
partners: Thales Communications (leader), IBISC, CEA Saclay, Ligeron S.A.
period: 36 months (label 2002, Dec. 2003 – Nov. 2006)
goals: abstract and compositional specification and testing – heterogeneous specifi-
cations (UML/SDL/Esterel), integration of data into behaviors requiring the use of
symbolic transition systems (STS) to avoid state space explosion
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Scientific Advisory

PhD Advisory

Lina Bentakouk
Dec. 2007 – Dec. 2011
Test symbolique de services Web composites (Symbolic Testing of Composite Web Services)
advisory: 40% (direction: M.-C. Gaudel, 20%, co-advisor: F. Zäıdi, 40%)
I am co-advising this PhD since my arrival at LRI (Sept. 2008).

Huu Nghia Nguyen
Jan. 2010 – (Jan. 2013 )
Approche de coordination distribuée à base de test et de diagnostic (Distributed Coordination
Approach based on Test and Diagnosis)
advisory: 50% (direction: F. Zäıdi, 50%)

Rania Khefifi
Nov. 2010 – (Nov. 2013 )
Model-based Techniques for Automatic PIMS Construction
advisory: 50% (direction: P. Poizat, 50%, co-advisor: F. Säıs, 50%)
I have obtained a derogation to direct this PhD without habilitation.

Master Research Internships

Paraskevi Zerva
2010 / Automatic Mashup Composition for Sensor Data
advisory: 80% (co-advisor: T. Melliti (IBISC, U. Evry), 20%)
Paraskevi has been selected for a PhD in Germany and another one in Ireland.

Sandrine Beauche
2007 / Adaptation de services en informatique diffuse (Service Adaptation for Pervasive
Computing)
advisory: 50% (co-advisor: S. Ben Mokhtar (INRIA), 50%)
Sandrine is an engineer within the ARLES project-team at INRIA Paris-Rocquencourt.

Ouahiba El Gares
2004 / Etude d’architectures de composants hétérogènes (Heterogeneous Component Archi-
tectures)
advisory: 100%

Abdelghani Sedkaoui
2003 / Implantation d’un modèle à composants en Java (Implementation of a Component
Model in Java)
advisory: 80% (co-advisor: J.-C. Royer (LINA, INRIA/Ecole des Mines de Nantes), 20%)

Redouane Layadi
2003 / Analyse d’architectures de composants (Component Architecture Analysis)
advisory: 50% (co-advisor: P. Le Gall (U. Evry), 50%)
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