
Automatic Composition of Form-Based Services
in a Context-Aware Personal Information Space

Rania Khéfifi1, Pascal Poizat2, and Fatiha Säıs1

1 LRI, CNRS and Paris Sud University,
{rania.khefifi,fatiha.sais}@lri.fr

2 LIP6, CNRS and Paris Ouest University
pascal.poizat@lip6.fr

Abstract. Personal Information Spaces (PIS) help in structuring, stor-
ing, and retrieving personal information. Still, it is the users’ duty to
sequence the basic steps in different online procedures, and to fill out
the corresponding forms with personal information, in order to fulfill
some objectives. We propose an extension for PIS that assists users in
achieving this duty. We perform a composition of form-based services in
order to reach objectives expressed as workflow of capabilities. Further,
we take into account that user personal information can be contextual
and that the user may have personal information privacy policies. Our
solution is based on graph planning and is fully tool-supported.

Keywords: Service Composition, Ontologies, Contextual Data, Personal
Information, Privacy, Graph Planning

1 Introduction

Personal Information Spaces (PIS) support users in structuring, storing, and re-
trieving their personal information. However, with regards to online procedures,
e.g., administrative processes, users are left alone to find out which services can
be used to achieve parts of the procedures, how to sequence parts of these ser-
vices, and how to fill the service forms using their personal information. Service
composition [8, 2] supports the realization of business processes out of the au-
tomatic assembly of online services. Still, a first issue is to deal with data at
the good level of abstraction. Service composition algorithms that support data
do it at the type level. If some service requires a data of type d, any value will
be ok. This is not realistic in a PIS where data is contextual. Depending on a
context of interest, not all possible values for data type d are equivalent and/or
valid to be used as a service input. A second issue is that personal information
is sensitive. Users should be able to specify access policies to be endorsed while
passing data to the composed services.

Contributions. We present in this paper a service composition approach for the
realization of online procedures that are expressed as workflows. This approach is
context-aware. It considers the contextual usability of user personal information
that are to be transmitted in online service forms. Further, it supports personal

2 R. Khéfifi, P. Poizat, and F. Säıs

information access policies while computing the compositions. Our approach
is automatic and tool-supported through the use of semantic annotations, the
encoding of the composition requirements into an AI planning problem, and an
extension of a state-of-the-art graph planning algorithm.

Related Work. Several service composition approaches have used context infor-
mation, e.g., [9, 13, 10]. Most of them consider context with a technical perspec-
tive (e.g., device type, battery charge, GPS information) that is used to select
functionality (services). We consider contexts in a more general sense, together
with possible relations (subsumption, disjointness) between them that enable
contextual reasoning. We do not only use contexts to select services but also to
select the best (in terms of usability) data to give to these services. Some ap-
proaches [5, 1, 4] take into account policies in the composition process. While [5]
supports them after composition generation and [1, 4] at execution time, we con-
sider policies directly in the composition process. In a previous work [11] we have
developed a service composition approach based on graph planning. The work
we present here can be seen as an extension of it that supports contexts and
access policies.

Outline. After giving preliminaries on graph planning in Section 2, our models
are introduced in Section 3. The description of the way the composition issue
can be solved using an extension of graph planning is presented in Section 4. We
end with conclusions and perspectives in Section 5. Due to lack of room, it was
not possible to put all details in this paper. An extended version that includes
a detailed example is available online in the authors’ Web pages.

2 Preliminaries

Planning is “the task of coming up with a sequence of actions that will achieve
a goal” [12]. A (propositional) planning problem can be modeled by a tuple
Π = (P,A, I,G), where P is a set of propositions, A is a set of actions, each
action a ∈ A with a set of preconditions Pre(a) ⊆ P, a set of negative effects
Eff−(a) ⊆ P, and a set of positive effects Eff+(a) ⊆ P such that = Eff−(a) ∩
Eff+(a) = ∅, also denoted with a = (Pre(a),Eff−(a),Eff+(a)), I ⊆ P is the
input, or initial state, of the problem, and G ⊆ P is the goal of the problem.

Two actions a and b are independent iff Eff−(a) ∩ (Pre(b) ∪ Eff+(b)) = ∅
and Eff−(b)∩ (Pre(a)∪Eff+(a)) = ∅. A set of actions is independent when its
actions are pairwise independent.

Among the different techniques to solve planning problems, Graphplan [3]
is a technique that yields a compact representation of relations between actions
and represent the whole problem world. It has proven to be very efficient and has
been applied with success to Web service composition [11] and to composition
repair [14]. The Graphplan algorithm is based on the computation of a planning
graph (Fig. 1), which is a directed acyclic graph composed of interleaved layers
called proposition layers PLi ⊆ P and actions layers ALi ⊆ A.

The first proposition layer, PL0, is made up of the propositions in I. The
Graphplan algorithm then performs graph expansion. Given a proposition layer

Composition of Form-Based Services in a Context-Aware PIS 3

a proposition

U action U invalid
action

c U precondition

c U negative
effect cU positive

effect

eY backtrack
from solution

a
no-op

U

Z

a

c

d

b

U

Z

Y

S

a

c

b

d

e

 Actions (Pre, Eff-, Eff+):
 U = ({a}, {a}, {b,c}), Z = ({a}, {a}, {b,d})
 Y = ({b}, { }, {e}), S = ({c, d}, { }, {e})
Init: {a}
Goal: {e}

PL0 AL1 PL1 AL2 PL2

mutex

bUa

Fig. 1. Graphplan example

PLi, an action a is added in ALi if its preconditions and negative effects are
in PLi. If so, all positive effects of a are added in PLi, and a is connected
with precondition arcs (resp. negative effect arcs) to its preconditions (resp.
negative effects) in PLi−1 and with positive effect arcs to its positive effects in
PLi. Specific actions (no-ops) are used to keep propositions from one layer to
the next one. Graph planning also introduces the concept of mutual exclusion
(mutex) between non independent actions. Mutual exclusion is reported from a
layer to the next one while building the graph.

The expansion phase stops either when the objective is reached, i.e., if G is
included in PLi, without mutex between elements in G, or with a fix-point, i.e.,
if PLi = PLi−1. In second case there is no solution to the planning problem.
In the first case, the Graphplan algorithm then performs a backtrack from the
goal propositions in PLi to the initial proposition layer PL0. Planning graphs
whose computations have stopped at level k enable to retrieve all solutions up to
this level. Additionally, planning graphs enable to retrieve solutions in a concise
form, taking benefit of actions that can be done in parallel (denoted ||).

An example is given in Figure 1. The extraction phase gives plans U; Y, Z; Y,
and (U||Z); S. However, U and Z are in mutual exclusion. Accordingly, since
there is no other way to obtain c and d than with exclusive actions, these two
propositions are in exclusion in the next proposition layer, making S impossible.
The only possible solution plans are therefore U; Y and Z; Y. Note that other
nodes are indeed in mutual exclusion but we have not represented this for clarity.

3 Modeling of the Composition Problem

In this section, we formalize the problem of composing form-based services in
context-aware personal information spaces. We will present the different inputs
of this composition problem. In Section 4 we will then address how this problem
can be solved automatically using an extension of graph planning.

4 R. Khéfifi, P. Poizat, and F. Säıs

3.1 Ontologies

An ontology can be denoted by a tuple O = (C,P,R) where C are classes (se-
mantic concepts), P are properties of concepts (either other concepts or literal
values), and R are relations between concepts. We consider four possible kinds
of relations in R: subsumption (�), part-whole relationship (@), equivalence, or
synonymy relationship (≡), and disjunction (⊥). Disjunction respects subsump-
tion, i.e., ∀c1, c′1, c2, c′2 ∈ C, c2 � c1, c′2 � c′1, c1⊥c′1 ⇒ c2⊥c′2. Further, �∗ denotes
the transitive closure of �. In this work we sometimes rely on simpler ontologies,
with only classes and a subsumption relation. In such a case we have O = (C,�).

3.2 Semantic Structures

In [6], we have developed the notion of semantic context-aware PIS based on
three principles: modeling, contextualization, and instantiation of personal in-
formation. Modeling is achieved using an ontology, O = (C,P,R), that describes
the personal information types (PIT), their properties, and relations. Contexts
are also described with an ontology, OCont = (CCont,�Cont). Given two contexts
c1 and c2, c2 � c1 means that all property values that are valid for c1 are also
valid for c2. To instantiate the user’s personal information we have considered
that a property value for a property p is defined by a tuple pv = (v, c, δ) where
v is the value, c is a context of the context ontology, and δ is a real number in
[0..1] that represents the usability of value v for property p in context c.

To foster automation of the composition process, we further assume that
the user structures the PIS with reference to categories of personal information
using an ontology OInfo = (CInfo,�Info). On the other side, within the context of
a research project3, we are working with an SME partner that develops services
for administrations and enterprises. Each service is semantically annotated with
semantic information for the forms fields, for the outputs it can produce, and with
the set of functionalities, or capabilities, it achieves. The first two correspond to
the PIT ontology. For the later we rely on an ontology of capabilities, OCap =
(CCap,�Cap). Finally, services can be organized in categories too. For this we
assume an ontology of service categories, OServ = (CServ,�Serv)

3.3 Policies

The user may express policies on the use of the personal information to be given
to services. Given a personal information category x (from CInfo) and a service
category y (from CServ), a policy authorization (or authorization for short) is a
couple (x, y), also denoted by xBy. Its meaning is that any personal information
of a category that is x or subsumes it can be given to any service of a category
that is y or subsumes it. A policy set, or policy for short, is a set of authorizations.

3 Personal Information Management through Internet
http://genibeans.com/cgi-bin/twiki/view/Pimi/WebHome

Composition of Form-Based Services in a Context-Aware PIS 5

3.4 Workflows and Procedures

Workflows capture the behavioral aspects of online procedures. Given a set of
names A, used to label the basic activities, a simple (yet expressive) kind of
workflow over A, WFA, can be modeled following [7] by a tuple (N,→, λ). N is
the set of workflow nodes. It can be further divided into disjoint sets N = NA ∪
NSO∪NSA∪NJO∪NJA, where NA are basic activities of the workflow, NSO are
XOR-split nodes, NSA are AND-split nodes, NJO are XOR-join nodes, and NJA

are AND-join nodes. XOR-split and XOR-join nodes enable to model exclusive
choice, while AND-split and AND-join nodes enable to model parallelism. →⊆
N ×N denotes the control flow, and λ : NA → A is a function assigning names
to activity nodes. We note •x = {y ∈ N | y → x} and x• = {y ∈ N | x→ y}. We
require that workflows are well-structured and without loop. A signicant feature
of well-structured workflows is that the XOR-splits and the OR-Joins, and the
AND-splits and the AND-splits appear in pairs. Moreover, we require | • x| ≤ 1
for each x in NA ∪NSA ∪NSO and |x • | ≤ 1 for each x in NA ∪NJA ∪NJO.

A procedure is the specification of functionalities that should be achieved
to reach some goal. These functionalities correspond to capabilities that will be
realized through the use of one or several form-based services. We may then
model a procedure by a workflow labelled by capabilities, i.e., defined over CCap.

3.5 Services

Services require a set of inputs in order to produce outputs and achieve their
capabilities. They are organized in categories. Given the ontologies introduced
in 3.2, we model services as a tuple w = (u, I, O,K,C) where u is the service
URI (address of the service form), I ⊆ P are the service inputs, O ⊆ P are
the service outputs, K ⊆ CCap are the service capabilities, and C ∈ CServ is the
service category. In the sequel we suppose a set of services W being available to
the user. Services may not have capabilities. These correspond for example to
transformational services (e.g., to retrieve a postal code from a city name).

3.6 Composition Requirement

The requirement of composition is to find out a correct sequence of groups of
services, possibly executed in parallel, i.e., a plan in the sense of planning, that
altogether are able to achieve some procedure using only the data they produce
and the personal information the user agrees to provide them with. Further,
one may precise a specific context in which the procedure is to be executed and
a minimal usability value for contextualized information (below this threshold
information is not relevant). Given the ontologies introduced in 3.2, a compo-
sition requirement is a tuple Req = (Proc, c, ε,W, PIS, Pol) where Proc is the
procedure one wants to achieve, c ∈ CCont is the context in which we apply the
procedure (> for none), ε ∈ [0..1] is the minimal acceptable usability degree, W
are the available services, PIS is the user PIS (i.e., the set of contextualized
property values it contains), and Pol is the user policy set.

6 R. Khéfifi, P. Poizat, and F. Säıs

4 Automatic Encoding and Resolution of the
Composition Problem

In Section 3, we have formalized the composition problem that we address. In
this section, we present how it can be automatically solved using a planning
problem encoding and by extending the Graphplan algorithm. The approach we
follow is first to encode the procedure and the services as planning actions.

4.1 Procedure Encoding

We reuse here a transformation from workflows to Petri nets defined in [7] that
has been modified to map planning actions in [11]. The behavioral constraints
underlying the workflow semantics (e.g., an action being before/after another
one) are supported through two kinds to propositions: rx,y and cx,y. We also
have a proposition] for initial states, and a proposition

√
for correct termination

states. We may then define actions:

– for each x ∈ NSA, we have an action a = ⊕x, for each x ∈ NJA, we have an
action a = ⊕x, and for each x ∈ NA, we have an action a = [λ(x)]x. In all
three cases, we set:
Pre(a) = Eff−(a) =

⋃
y∈•x{rx,y}, and Eff+(a) =

⋃
y∈x•{cx,y}.

– for each x ∈ NSO, for each y ∈ x•, we have an action a = ⊗x, y and we set:
Pre(a) =Eff−(a) =

⋃
z∈•x{rx,z}, and Eff+(a) ={cx,y}.

– For each x ∈ NJO, for each y ∈ •x, we have action a = ⊗x, y and we set:
Pre(a) = Eff−(a) ={rx,y} and Eff+(a) =

⋃
z∈•x{cx,z}

– for each x→ y, we have an action a = x, y and we set:
Pre(a) =Eff−(a) = {cx,y} and Eff+(a) = {ry,x}.

– additionally, for any initial action a we add] in Pre(a) and Eff−(a).

– additionally, for any final action a we add
√

in Eff+(a).

The procedure and the services are inter-related by ordering constraints over
the capabilities. Let us suppose a simple procedure with two capabilities in
a sequence k1 → k2, a service w1 with capability k1, and a service w2 with
capability k2. w1 should not be put in an action layer before capability k1 is
enabled. This is achieved after putting the action corresponding to step k1 in
the encoding of the procedure in an action layer. In turn, the actions encoding
the following steps of the procedure (here only the action, that will enable the
action for k2 later on) should be blocked until capability k1 has been planned,
i.e., here, w1 has been put in an action layer. For this we propose to rely on
two propositions for each capability k in CCap: enabledk and donek. In the
encoding of the procedure workflow, we then replace any action a = [k]x by two
actions a′ and ā′ and we set Pre(a′) = Pre(a), Eff−(a′) = Eff−(a), Eff+(ā′) =
Eff+(a), Eff+(a) = {enabledk, linkx}, and Eff−(ā′) = {donek, linkx}, with
linkx ensuring the correct ordering between a′ and ā′.

Composition of Form-Based Services in a Context-Aware PIS 7

4.2 Service Encoding

A service can be executed only if all its inputs are available and if its ca-
pacities are enabled by the current state of execution of the procedure. The
service then generates its outputs and indicates that the capacities have been
achieved. Each service w = (u, I, O,K,C) is therefore encoded as an action
a = (Pre(a),Eff−(a),Eff+(a)) with Eff−(a) =

⋃
k∈K{enabledk}, Eff+(a) =

O ∪
⋃

k∈K{donek}, and Pre(a) = I ∪Eff−(a).

4.3 Resolution of the Composition Problem

Once we have encoded the procedure and the services as planning actions, we
can apply the 2-step Graphplan algorithm: graph expansion and then backtrack-
ing (see Sect. 2). The second step is the same as in the original algorithm [3].
However, due to the contextualization of data and the use of policies, the first
step has to be modified as follows.

Contextual Propositions. As far as the encoding of personal information is
concerned, we replace basic propositions by tuples (p, c, δ) corresponding to the
PIS property values. Such a tuple denotes that some value for property p in
known for context c (the context used in the composition requirements) with
usability degree δ. Other propositions, e.g., corresponding to the encoding of
the procedure, are regular with reference to graph planning.

Filtering Out. A preliminary optimizing step is to filter out any proposition
corresponding to personal information p for which there is no enabling policy
(some x′ B ∈ Pol where x, x�Info

∗x′, denotes the category of p). We also
remove actions corresponding to services that are not allowed to use some of
their inputs, i.e., a service w with at least an input p ∈ I(w) such that there is
no x′ B y′ ∈ Pol, with x, x�Info

∗x′, being the category of p and y, y�Serv
∗y′,

being the category of w.

Initialization - PL0. The first proposition layer contains the initial proposition
for the procedure,], together with propositions for the contextual property values
in the PIS. For the later, for each property value (v, c, δ) for p, we compute a
contextual proposition (p, c, δ′) where δ′ is equal to δ ×∆OCont

c,c with δ ×∆OCont
c,c

being the semantic similarity measure between two concepts in the ontology
OCont (see [6] for the way we compute this for contextual data querying). We
put in PL0 all the (p, c, δ′) where δ′ is maximal.

Expansion Basic Step. What changes here with reference to [3] is the con-
dition and effect of adding an action a related to some service w in an action
layer. First w should be authorized to use its input data. This is ensured by the
filtering step, above. Second, all inputs required for w should be available in the
current proposition layer with a degree higher than the threshold, i.e., for each p
in I(w), there is some (p, c, δ) in PLi−1 such that δ ≥ ε. If so, for each p in O(w),

8 R. Khéfifi, P. Poizat, and F. Säıs

we add (p, c, δ′) in PLi, where δ′ is the minimal value of δ for all the inputs of w
in PLi−1. Further, for every k in K(w), we require enabledk ∈ PLi−1 and we
add donek in PLi. Since several services may produce the same data, at each
step of the expansion we perform a cleaning by keeping in PLi only the tuples
with the maximal δ, i.e., if we have (p, c, δ1) and (p, c, δ2) in PLi, with δ1 ≥ δ2,
we keep only the first one.

Nothing changes for actions related to the procedure encoding. Given such an
action a, we should have Pre(a) ⊆ PLi−1, Eff−(a) ⊆ PLi−1, and then we add
Eff+(a) in PLi−1. Non independent actions are treated as in [3], using mutex.

Expansion Termination. Expansion stops with a fix point or with success.
The later is reached when there is the

√
proposition in the current proposition

layer, which means that we have successfully completed the procedure. In such
as case a solution can be obtained using backtrack. Fix point is if the current
proposition layer PLi add no new proposition with reference to PLi−1. In order
to support data contextualization, we consider a tuple (p, c, δi), δi ≥ ε, to be a
new proposition either if there is no tuple (p, c,) in PLi−1 or if there is a tuple
(p, c, δi−1) such that δi−1 < ε. This is because having a new contextual value
with a degree above the requirement threshold may yield new possibilities for
service-related actions.

4.4 Tool Support

We have defined an Eclipse Modeling Framework model for the models pre-
sented in this paper, namely composition requirements with their constituents,
and planning problems. Using an ATL model-to-model transformation, we trans-
form the former into the later and then dump the planning problem into a text
file using an Acceleo model-to-text transformation. We have implemented our
modifications to the graph planning expansion structure in a Java implementa-
tion of the Graphplan algorithm4. This operates on the textual planning problem
file to retrieve solution plans. We are currently packaging our tool support to
make it freely available.

5 Conclusion

In this paper we have presented a service composition approach that supports
the contextualization of personal information and related user policies. This is
achieved using an encoding as a planning problem and the extension of a graph
planning technique, which provides full automation of the process. As future
work, we plan to study the joint use of several contexts and the contextualization
of services, i.e., enabling context-oriented constraints for input and output data
in online services. The usability degree we use can be seen as a form of non-
functional information used in composition. We plan to study the combination
of it with user-specific preferences over non-functional service attributes.

4 http://sourceforge.net/projects/jplan/

Composition of Form-Based Services in a Context-Aware PIS 9

Acknowledgement. This work is supported by project ”Personal Information
Management through Internet” (PIMI-ANR-2010-VERS-0014-03) of the French
National Agency for Research.

References

1. Anand, P., Vladimir, K., Lalana, K., Anupam, J.: Enforcing policies in pervasive
environments. In: Proc. of MobiQuitous (2004)

2. Bartalos, P., Bieliková, M.: Automatic Dynamic Web Service Composition: A Sur-
vey and Problem Formalization. Computing and Informatics 30(4), 793–827 (2012)

3. Blum, A., Furst, M.L.: Fast Planning Through Planning Graph Analysis. Artificial
Intelligence 90(1-2), 281–300 (1997)

4. Dulay, N., Damianou, N., Lupu, E., Sloman, M.: A Policy Language for the Man-
agement of Distributed Agents. In: IJAOSE (2002)

5. Hutter, D., Volkamer, M.: Information Flow Control to Secure Dynamic Web Ser-
vice Composition. In: Security in Pervasive Computing (2006)

6. Khéfifi, R., Poizat, P., Säıs, F.: Modeling and Querying Context-Aware Personal
Information Spaces. In: Proc. of DEXA(2) (2012)

7. Kiepusewski, B.: Expressiveness and suitability of languages for control flow mod-
elling in workflows. Queensland University of Technology, Brisbane (2003)

8. Marconi, A., Pistore, M.: Synthesis and Composition of Web Services. In: Proc. of
SFM (2009)

9. Mostéfaoui, S.K., Hirsbrunner, B.: Towards a Context-Based Service Composition
Framework. In: Proc. of ICWS (2003)

10. Mrissa, M., Benslimane, D., Maamar, Z., Ghedira, C.: Towards a semantic- and
context-based approach for composing web services. IJWGS 1(3/4), 268–286 (2005)

11. Poizat, P., Yan, Y.: Adaptive Composition of Conversational Services through
Graph Planning Encoding. In: Proc. of ISoLA(2) (2010)

12. Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M., Edwards, D.D.: Artificial Intel-
ligence: A Modern Approach. Prentice hall Englewood Cliffs (1995)

13. Sheshagiri, M., Sadeh, N., Gandon, F.: Using Semantic Web Services for Context-
Aware Mobile Applications. In: Proc. of MobiSys (2004)

14. Yan, Y., Poizat, P., Zhao, L.: Repair vs. Recomposition for Broken Service Com-
positions. In: Proc. of ICSOC (2010)

