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Abstract. Task-Oriented Computing supports the realization of user
needs through the automatic composition of services from service de-
scriptions and user tasks, i.e., high-level descriptions of the user needs.
Service-Oriented Computing supports the description, publication, dis-
covery and composition of services. Yet, automatic service composition
processes commonly assume that service descriptions and user tasks
share the same abstraction level, and that services have been pre-designed
to integrate. To release these strong assumptions and to augment the
possibilities of composition, we add adaptation features into the service
composition process using semantic descriptions and adaptive extensions
to graph planning. Our adaptive composition technique is fully automatic
and has been implemented in a prototype tool.
keywords: Services, Task-Oriented Computing, Composition, Software
Adaptation, Planning, Workflow Languages, Tools.

1 Introduction

Task-Oriented Computing envisions a user-friendly pervasive world where user
tasks corresponding to a (potentially mobile) user would be achieved by the auto-
matic assembly of resources available in her/his environment. Service-Oriented
Computing [1] (SOC) is a cornerstone towards the realization of this vision,
through the abstraction of heterogeneous resources as services and existing au-
tomated composition techniques. Yet, services being elements of composition
developed by different third-parties, their reuse and assembly naturally raises
composition mismatch issues [2, 3]. Moreover, Task-Oriented Computing yields
a higher description level for the composition requirements, i.e., the user task(s),
as the user only has an abstract vision of her/his needs which are usually not
described at the service level. These two dimensions of interoperability, namely
horizontal (communication protocol and data flow between services) and verti-
cal matching (correspondence between an abstract user task and concrete service
capabilities) should be supported in the composition process.

⋆ A shorter version of this paper has been published in the proceedings of ICSOC’08.
⋆⋆ This work is supported by the project “PERvasive Service cOmposition” (PERSO)

of the French National Agency for Research, ANR-07-JCJC-0155-01.
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Software adaptation is a promising technique to augment component reusabil-
ity and composition possibilities, thanks to the automatic generation of software
pieces, called adaptors, solving mismatch out in a non intrusive way [2, 3]. More
recently, adaptation has been applied in SOC to solve mismatch between services
and clients (e.g., orchestrators) [4, 5]. In this article we propose to add adapta-
tion features in the service composition process itself. More precisely, we propose
an automatic composition technique based on planning, a technique which is in-
creasingly applied in SOC [6] as it supports the automatic composition of services
from underspecified requirements.

The rest of this paper is structured as follows. We present with more details
the motivations and the principles of our approach, together with a running
example, in Section 1. After giving the necessary preliminaries on planning in
Section 2, we present more technically our adaptive planning composition in
Section 3. Related work is discussed in Section 4 and we end with conclusions
and perspectives.

2 Motivating Example and Overview of the Approach

In this article we use a running example inspired from the case study introduced
in [7]. This example is relative to the purchase and online payment of articles
from an electronic store, and is representative of user tasks to be composed out
of services available over the Internet. Due to lack of place, we focus here on
the model-based part of our approach, i.e., we work with models for services
and user tasks. More precisely, as far as service conversations and resulting or-
chestrators are concerned, we work with YAWL [8] models. We think this is a
sensible choice due to the the existence of a YAWL extension (simply refereed as
YAWL in the sequel) for Web services and a tool supporting translation from/to
WS-BPEL [4]. In this paper we are interested in the basic constructs needed
to represent external behavioural service descriptions: receive, reply, invoke, se-
quence, choice (if) and loop (while). The relation between WS-BPEL and YAWL
is illustrated in Figures 1 and 2. Data used by an activity are given above them.
Accordingly, resulting data is below the actions. The Amazon service provides
a capability called BookSearch with a conversation (sequence) over three op-
erations: login and logout, with a customer identifier (customerId) as input (in
message part UId), and itemSearch with a book title (title) as input (in message
part bookTitle) and a structured information on the search result (bodySearch)
as output (in message part result).

Conversations constitute the external view of services, i.e., they describe how
to use services and hide their internal details (a service may be an orchestra-
tor and itself may call other services’ operations). To support the automatic
reasoning on services, which includes discovery and composition, additional in-
formation is required. The usual approach in automatic service composition is to
rely on semantic annotations. Here, we will use them for (i) service capabilities
and (ii) the input and output data associated to capabilities.



Automated Service Composition with Adaptive Planning 3

Fig. 1. Amazon service conversation (WS-BPEL)
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Fig. 2. Amazon service conversation (YAWL)

Let us now end the presentation of our example services (Fig. 3, where we
focus on the important part of conversations only). The Amazon service presented
above can be used to look for an eBook. There are two possible services for
payment (capability OnlinePayment), Paypal and MPS, and service MobiPocket
can be used to download an eBook (capability eBookDownload) in PRC format.
Using these services, to buy and read an eBook, one may then compose Amazon
(to search it), Paypal or MPS (to pay for it), and MobiPocket (to obtain it).
Another solution would be to use service @eBook to search and pay at once, and
then use the token it generates to get the eBook with MobiPocket.
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Fig. 3. Service conversations (YAWL)
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Fig. 4. Overview of our approach

Yet, the user does not know all this rather low-level information, nor the ef-
fective service capabilities, neither the exact data that can be exchanged through
the orchestrator between composed services to achieve the correct service com-
position. The user only has a high-level vision of her(his) needs: a capability, the
inputs (s)he is ready to provide and the outputs (s)he wants. In this example,
(s)he wants an eBookRetrieve capability, to provide title, customerId, and cred-
itCard information, and finally get an eBook in PRC format. There is clearly a
(vertical) mismatch between the user’s needs and the service descriptions.

Additionally, the services have been developed by different third-parties. One
may expect to compose them while from the input/output perspective they could
not be chained as-is by the orchestrator. For example, Amazon should be com-
posed with Paypal or MPS but part of the input data they require (respectively
orderTotal and amount+productId) does not correspond to what one gets from a
call to Amazon (bodySearch). This illustrates a (horizontal) mismatch. Yet, the
required data could be inferred from bodySearch.

In order to solve mismatch, we propose to use software adaptation techniques.
They rely on adaptation mappings to solve mismatch out (e.g, correspondences
between operation names when solving a signature mismatch between a client
requiring an operation and a service providing an operation with a different
name). More precisely:

– horizontal adaptation could be supported through relations between concepts
in an ontology of data types (Data Semantic Structure, DSS). These relations
would explicit possible transformation rules between data;

– vertical adaptation could be supported through a hierarchical structure de-
scribing relations between capabilities (Capability Semantic Structure, CSS).

Given a user task, a set of service models (YAWL), and both a DSS and a
CSS, our approach (Fig. 4) proceeds as follows. The CSS is first used to filter
services that may potentially be used in the composition, based on their capa-
bilities. Additionally, the CSS is labelled with potential (discovered) services for
each capability (l-CSS). Then, a graph planning structure is computed, which
chains all services capabilities based on input/output dependencies and l-CSS
constraints. Finally this structure is analysed to obtain all possible service com-
positions (in YAWL) corresponding to the user task (which can be none).
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3 Preliminaries

Planning is a technique to generate an ordering of a subset of available tasks,
called a plan, in order to reach objectives with respect to some constraints. There
are different kinds of planning. In chaining, e.g., [9], there is a given world whose
state is modified by tasks effects (also called postconditions). The application
of tasks can be constrained by their preconditions. In forward chaining, plans
are built by chaining tasks, from an initial world state, up to a final one (the
objective). Accordingly, backward chaining proceeds from the objective back to
the initial state. In hierarchical planning, e.g, [10, 11], the objective is different as
it is the decomposition of abstract tasks into concrete ones following constraints
specified in a hierarchical task structure.

Both kinds of planning are important for our objective. Chaining could be
used to chain calls to service capabilities from the set of data the user is ready
to provide, up to the set of data (s)he wants. For this, task preconditions would
correspond to the input data required by service capabilities and task effects to
the output data they produce. Yet, this could yield inconsistent chains of service
calls, or more generally compositions not correct wrt. the user need specified
as an abstract capability. Hierarchical planning is a complementary solution
that could orient the chaining towards semantically correct compositions. In the
sequel we present representative instances of both techniques.

3.1 Graphplan [9]

Graphplan is a chaining technique that builds a (forward) chaining graph (called
graphplan) that contains all possible plans and then extracts plans from it. This
graph is made up of alternating fact (data) and action layers. Layers themselves
contain fact nodes (resp. action nodes). The graph is built by adding in an action
layer all actions whose preconditions are present in the current fact layer and
accordingly producing in the next fact layer the data corresponding to these
actions’ effect. Specific actions (no-op) are used to keep data from one layer to
the next one, and arcs to relate actions with used data and produced effects.
The construction stops when the objective is included in the fact layer (or with
a fixpoint). An example is given in Figure 5 where we suppose the initial state
is {a} and the objective is {e}. Applying U in the first action layer, for example,
is possible because a is present; and this produces b and c.

The extraction of plans from the graph is performed using a backward chain-
ing technique over action layers, from the final state (objective) back to the initial
one. In the example, plans U;Y, Z;Y, (U||Z);Y and (U||Z);S can be obtained (see
bold arcs in Fig. 5 for U;Y). A major benefit of Graphplan is to represent in a
single structure all possible solutions (plans). Graphplan introduces the concept
of mutual exclusion constraints between nodes. They are reported from a layer
to the next one while building the graph. For example, U and Z could be in
mutual exclusion (let us suppose the user wants either one or the other to fulfil
its need). Accordingly, since there is no other way to obtain c and d than with
exclusive actions, these two facts are in exclusion in the next (fact) layer, making
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Fig. 5. Graphplan example

S impossible. Moreover, two actions that require facts in mutual exclusion (here
two no-ops) are exclusive too.

3.2 GraphHTN [11]

Let us suppose U and Z can be respectively used to buy a book and a CD. While
sharing the same inputs, their semantics is different and a user may accept the
U;Y plan and not the Z;Y one. Chaining constraints are not enough to support
this. Rather we would like to support (abstract) user requirements over the
acceptable plan(s). GraphHTN is a hierarchical task planning approach that
extends Graphplan with decomposition constraints specified with an AND/OR
tree (Fig. 6). Non-leaf nodes correspond to abstract tasks. OR nodes describe
potential decompositions of abstract tasks while AND nodes impose that their
children are present in the solution. In such a case, a total ordering can be
specified (arrow) or not. In Figure 6, W can be decomposed either as U;Y;T or
as Z;X.

Upre: a
post: b, c

Ypre: b
post: e

Zpre: a
post: b, d

Tpre: e
post: f

W

OR node

AND node

total order

ca
b

d

U

e

V Z XU

Y T

2

1 1Y
Z

Fig. 6. GraphHTN example – after step 2

The marking of the tree while building plans is used to enforce the tree
constraints. Let us look at Figure 6. U and Z are added in the first step because
(i) their preconditions are satisfied (a) and (ii) they respect the tree constraints
(the first task for W can be U or Z). Accordingly their effect in the graphplan
is computed and their nodes are marked with the current step (1). At the next
step, V can be applied because its predecessor sibling is marked. Hence Y can be
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applied too, since V is abstract. The corresponding node (Y) is then marked (2).
The right W branch is discarded since there is no task X. T may now be applied
since its predecessor (Y) is marked. This would end the graphplan building as
(i) V would be marked (being an AND node with all children marked) and
then (ii) W, the root, would be too (being an OR node with one marked child).
Stopping as soon as the root is marked, GraphHTN extracts a unique plan. For
this, it relies on the same backward analysis as Graphplan.

4 Adaptive Planning Composition

4.1 Models

As discussed in Section 2 our approach takes as input a user task and a set of
services to be selected and composed in an orchestration. Moreover, in order
to perform adaptation at the same time than composition (the orchestrator is
also an adaptor), we rely on a semantic structure for capacities and a semantic
structure for data.

We define a Data Semantic Structure (DSS) as a tuple (D,⊳,⊏, ) where
D is a set of concepts (or semantic data type3) that represent the semantics of
some data, ⊳ is a composition relation ((d1, x, d2) ∈ ⊳, also noted d1 ⊳x d2 or
simply d1 ⊳ d2 when x in not relevant for the context, means a d1 is composed
of an x of type d2), and ⊏ is a simulation relation (d1 ⊏ d2 means d1 can be
used as a d2). We require there is no circular composition. DSSs are the support
for the automatic decomposition (d into D if D = {di | d ⊳ di}), composition
(D into d if D = {di | d⊳ di}) and casting (d1 into d2 if d1 ⊏ d2) of data types
exchanged between services and orchestrator. Transformation functions,  , are
used to transform some data into another one using relations between XPath
terms (e.g., in Fig. 7(a), a ColouredPoint can be transformed into a Pixel). Such
transformations are not required in our example (Fig. 7(b)), where, e.g., a price
can be used as an orderTotal, but both are basic types. An example of composite
type is bodySearch, made up of a price and a productId. DSS are rich structures
that support data adaptation and may result from ontology matching [12].

We also define a Capacity Semantic Structure (CSS) (Fig. 7(c)) as a couple
(K, TK) where K is a set of concepts that correspond to capacities and TK is
a tree where nodes can be either a capability node (in K) or a control node
where ; denotes a sequence, + denotes a choice and // parallelism. Moreover,
well-formedness of the tree imposes (i) leaves are capability nodes, (ii) capability
nodes have at most one child, and (iii) control nodes have at least two children.

CSSs are inspired from GraphHTN trees yet, due to the targeted objective
(service composition), we use different control nodes that correspond to the ba-
sic constructs of workflow languages. GraphHTN treatment of trees is simple
as only concrete tasks (leaves) can be used in plans. Meanwhile, due to vertical
adaptation, we do not know at which abstraction level the capacity of composed

3 In this paper, the concepts of semantics and type of data are unified.
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Fig. 7. CSS and DSS examples

services will be found, hence we have to consider all action nodes, not only leaves,
e.g., in Figure 7(c), if one looks for a eBookStore capability, we may either find
directly a service with it, or we may compose (in parallel) services with capabil-
ities BookSearch and OnlinePayment. Finally, concrete tasks in GraphHTN trees
are associated with inputs and outputs (see Fig. 6). We remove this hypothesis
as in service composition there may be several possible instances of an action
node (several services with the corresponding capability), all with different sets
of input and/or output data (e.g., Paypal and MPS in Fig. 3).

A service is defined by its external view, i.e., a conversation in YAWL. In
order to be able to automatically compose services, we suppose each service has
a (semantic) capability, and each operation defined in the service conversation
has a set of (potentially empty) inputs and a set of (potentially empty) outputs.
Finally, a user task corresponds to a service without conversation (the objective
is to retrieve it). Hence, it is only given as a capability, a set of provided input
data and a set of expected output data. In the sequel we suppose the user task
is (eBookRetrieve, {title, customerId, creditCard}, {PRC}).

4.2 Adaptive graphplan algorithm

In this section we first introduce an adaptive planning technique which uses
CSSs and extends GraphHTN to support vertical adaptation and multiple so-
lution obtaining. In a second step, we extend this adaptive planning technique
to support also horizontal adaptation thanks to DSSs. Finally, we present plan
extraction and the encoding into YAWL.



Automated Service Composition with Adaptive Planning 9

Composition with vertical adaptation. There are important differences
between GraphHTN trees and CSS, and in the way we use them for service
composition in Task-Oriented Computing. While GraphHTN chains only con-
crete tasks (the tree leaves), we do not know at which abstraction level (in the
CSS) services will be found, and several services may instantiate a capability.
Moreover, we do not want to generate only the first possible plan but all possible
service compositions. All these features yield algorithmic issues wrt. GraphHTN
that will be explained in the sequel.

Service discovery and l-CSS computation. This step is used to transform the
CSS structure to help reusing GraphHTN algorithms and to pre-select services
that may potentially be used in the composition. For this, we compute a labelled
CSS (l-CSS) as follows (see Fig. 8 for the application to Fig. 7(c)). First, we keep
only the CSS subtree whose root is the capability corresponding to the user task
which is supposed to be at least as abstract as the service capabilities. This
is a sensible hypothesis in Task-Oriented Computing. Then, abstract capability
nodes (i.e., non-leaf ones) are replaced by a method node (M) which denotes a
choice: it can be either instantiated directly by some service or its definition
(i.e., its sub-tree) can. In Figure 7(c), eBookStore may be either obtained by
calling @eBook or by composing in parallel Amazon (capability BookSearch) and
Paypal or MPS (capability OnlinePayment). Each capability node is replaced by
the service that supports it (in case of several services as for OnlinePayment, the
services are siblings under a M node). Finally, branches with no service instances
are discarded and control nodes with only one child are reduced (e.g., a branch
N →+ → T is replaced by N → T ).

//

M

M MobiPocket

@eBook

Amazon

MPSPaypal

1

1

1
2

2

;

Fig. 8. l-CSS example (marking is used in graphplan building wrt. Fig. 9)

Graphplan building. The graphplan is built using and marking the l-CSS (see
Figs. 8 and 9). Wrt. GraphHTN, ; and // nodes are treated as AND nodes, while
M and + nodes are treated as OR nodes, and capability nodes as activity nodes.
Algorithmic differences result from our multiple solution objective. First, there
may be several services instantiating a capability (children of M nodes) that are
possible at some step if all have their input data available. While including them
all in the graphplan, we add exclusion constraints between them to ensure they
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are exclusive in the solutions (e.g., Amazon and @eBook). Moreover, we let a
marked leaf be added again in the graphplan. This enables us to generate solu-
tions where the corresponding service appears in different places. For example,
this is mandatory to enable two children S1and S2 of a // node to generate the
S1;S2 and S2;S1 parts in two plans. Finally, with GraphHTN, the building al-
gorithm stops once the root node of the search tree is marked, which generates
only one plan. To be able to generate all possible plans we compute the length
of the graphplan required to obtain them all using the following rules: (i) the
length for a capability node is 1, (ii) the length for a ; or a // node is the sum of
the lengths of its children nodes and (iii) the length for a M or a + node is the
maximum of the lengths of its children nodes. We stop the building algorithm
only when this length (here, 3) is reached.

Adding horizontal adaptation to the picture. Another important differ-
ence with GraphHTN is horizontal (data) adaptation. We present here how we
extend the aforementioned technique to support this. Let us suppose we are af-
ter step 1 of Figure 9 and continue in Figure 10. Following the l-CSS (Fig. 8)
where nodes @eBook and Amazon would be marked, MobiPocket (for eBook-
Download), MPS and Paypal (for OnlinePayment) are theoretically applicable.
Let us concentrate on the later one. Practically, Paypal is not applicable as its
input data precondition on orderTotal is not satisfied. However, looking at the
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Fig. 10. Adaptive graphplan building (with data adaptation, principle)
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DSS (Fig. 7(b)), we see that this can be obtained from price which in turn can
be obtained using decomposition of bodySearch, which is available. The idea for
horizontal adaptation is to add such data transformations as new actions layers
in-between the ones that are computed with the previous algorithm. The pos-
sible transformations4 are those presented with the CSS model in Section 4.1:
decomposition, decomp(d,D) if D = {di | d ⊳ di}), composition, comp(D,d) if
D = {di | d⊳di}), and casting, cast(d1,d2) if d1 ⊏ d2. Interestingly one can have
a task vision of these, e.g., task cast above has precondition d1 and postcondition
d2. This means that after each action layer of the previous algorithm, we may
apply a forward chaining over such transformation tasks. The initial world is de-
fined to be the last data layer (in Fig. 10, this is {customerId, bodySearch, title,
token, creditCard}), while the data adaptation planning step is directed toward
the set of data required for services that are theoretically applicable but are cur-
rently missing (in Fig. 10, this is {orderTotal} for Paypal and {amount, productId}
for MPS). Note that since data available in the initial layer of this may be in mu-
tual exclusion, rules for mutual exclusion apply also for horizontal adaptation.
In our example, once orderTotal, amount and productId are obtained, the data
adaptation step may end and we get back to service planning as presented before
where Paypal and MPS are now applicable. The graphplan is further developed
alternating horizontal and vertical techniques until requested data are available
(here PRC) and the correct length (3 service layers) is reached. This graphplan
is presented in Appendix.

Plan extraction and YAWL generation. As for techniques presented in
Section 3, extraction is performed backtracking from the objective, here the
user task expected data. Yet, contrary to GraphHTN, whose tree only supports
graphplan building, we also use our l-CCS for on-the-fly filtering of plans while
doing extraction. Filtering is required by the fact that, as presented above, to
generate all compositions we have to be more permissive when constructing the
graphplan.

Several plans are generated for our example:

– @eBook;MobiPocket,
– Amazon;decomp(bodySearch,{productId,price});cast(price,orderTotal);Paypal;

comp({autorization,productId},token);MobiPocket, and
– Amazon;decomp(bodySearch,{productId,price});cast(price,orderTotal);

cast(orderTotal,amount);MPS;comp({autorization,productId},token);MobiPocket.

However, to the contrary of task planning, the work is not done. We now have to
transform plans into orchestrators written in an implementable model language,
namely YAWL. This is demonstrated in Figure 11 for the second of the plans
above.

The process we are defining has a single operation, whose name corresponds
to the user task capability. The operation input and output data also correspond

4 We omit composition attributes (x in d1 ⊳x d2) here and in Fig. 10 graphplan for
clarity reasons.
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Fig. 11. A composition for user task (eBookRetrieve, {title, customerId, creditCard},
{PRC}) (YAWL)

to the user task ones. Variables are defined for all semantic data types (with
the same name, e.g., variable title of type title) and for messages (with a unique
name built using the corresponding partner/service, operation name and message
direction, e.g., AmazonloginIn or AloginIn in Fig. 12 for place matters). Ordering
and parallelism in the plans are respectively transformed into sequences and
flows.

Actions in plans can be service capability use or horizontal adaptation fea-
tures: cast, composition and decomposition. Casts are translated with assign-
ments. To cast d1 into d2, we use as many assignments as there are  rules for
them, e.g., 3 to cast a ColouredPoint into a Pixel in Figure 7(a). In case of simple
casts between basic types, a single assignment is required. Composition of a set
of di into some d is translated with one assignment for each di, e.g., token.auth
:= autorization and token.product := productId. Decomposition is achieved in the
reverse way.

assign invoke
login
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itemSearch
invoke assign assign invoke
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title
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bookTitle

AitemSearchIn

AitemSearchOutAitemSearchIn.
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Fig. 12. Amazon conversation integration (YAWL)

Service capability use is achieved through conversation integration (see, e.g.,
Fig. 12 for Amazon). To this purpose, we use the service conversation (e.g.,
Fig. 2 for Amazon). We take the hypothesis that for two-way operations, the
corresponding receive and reply activities are following in the conversation. Then,
the conversation can be obtained using an invoke activity in the conversation
integration for each receive activity in the service original conversation. The
link between message parts of the invoke activities and orchestration variables
is achieved using assignments.



Automated Service Composition with Adaptive Planning 13

Finally, we add a prologue and an epilogue to the YAWL workflow. The
prologue corresponds to the beginning of the process and to the reception of
a message for the user task operation. The epilogue corresponds to the reply
relative to the aforementioned message reception and to the end of the process.
The complete YAWL workflow is given in Appendix.

Tool. Our approach is fully automated thanks to GraphAdaptor, a tool written
in Python. It takes as input a set of description files for user task, service, CSS
and DSS. Additionally, for a service, the description file refers to a YAWL file. As
a result, GraphAdaptor outputs a YAWL file for each possible service composition
satisfying the user task.

5 Related work

Our work is at the intersection of two domains: service composition and software
adaptation. Automatic composition is an important issue in Service-Oriented
Computing and numerous works have addressed this over the last years. Among
these, planning-based approaches have particularly been studied due to their
support for underspecified requirements [13–16]. As an alternative, automatic
composition has also been achieved using matching and graph/automata-based
algorithms [17–19] or logic reasoning [20]. Various criteria could be used to differ-
entiate these approaches, yet, due to our Task-Oriented Computing motivation,
we will focus on issues related to user task requirements, vertical, and horizontal
adaptation.

While both data input/output and capability requirements should be sup-
ported to ensure composition is correct wrt. the user needs, only [15, 18] do,
while [13, 14, 16, 17, 19] support data only and [20] supports capabilities only.
As far as adaptation is concerned, [14, 16, 18, 19] support a form of horizontal
(data) adaptation, using semantics associated to data; and [13] a form of vertical
(capability abstraction) adaptation, due to its hierarchical planning inheritance.
In our proposal, we combined both techniques to achieve both adaptation kinds.

Some approaches support more expressive models in which protocols can
be described over capabilities – either for the composition requirement [20] or
for both composition and services [15, 18]. Up to now, like [13, 14, 16, 17, 19],
we only support conversations over operations (for a given capability). Yet, we
advocate that in most cases this is not a limitation for the user task, that can be
described with a single abstract capability meanwhile our hierarchical planning
tree (CSS), with its workflow-inspired operators (nodes), can be used to specify
more concrete capability protocols.

As opposed to the aforementioned works dealing with orchestration, in [21],
the authors present a technique with adaptation features for automatic service
choreography. It supports a simple form of horizontal adaptation, however their
objective is to maximize data exchange between services but they are not able
to compose services depending on an abstract user task.
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Few works explicitly add adaptation features to Service-Oriented Comput-
ing [4, 5]. They adopt a different and complementary view wrt. ours since their
objective is not to integrate adaptation within service composition in order to
increase the orchestration possibilities, but rather to tackle protocol adaptation
between clients and services, e.g., to react to service replacement. Indeed, the
more advanced software adaptation works [22–24] are model-based approaches
whose objective is to solve protocol mismatch between a fixed set of components,
and do not tackle the discovery of the required components nor the composition
towards user needs. Rather, they support a form of composition verification,
e.g., through temporal logic requirements (defined at the same abstraction level
than the composed entities) for the composition. Moreover, but for [22], where
adaptation is applied to COM/DCOM components, they do not address adap-
tor implementation. While these works rely on simple labelled transition systems
models, we rely on YAWL which is closer to the services models, hence made it
possible to derive WS-BPEL code in a simpler way, following [4].

6 Conclusion

Software adaptation is a promising approach to augment service interoperability
and composition possibilities. In this paper we have proposed a technique to
integrate adaptation features in the service composition process. With reference
to related work, we support both horizontal (data exchange between services
and orchestrator) and vertical adaptation (abstraction level mismatch between
user need and service capabilities). This has been achieved combining semantic
descriptions (for data and capabilities) and hierarchical planning. We are also
able to generate different composition solutions to the user task requirement,
while ensuring they are correct from both data and semantics points of view.

The approach at hand is dedicated to deployment time, where services are
discovered and then composed out of a set of services that may change. Yet, in
a pervasive environment, services may appear and disappear also during com-
position execution, e.g., due to the user mobility. A first perspective concerns
this issue. Upon disappearance of a service to be used in the future (wrt. the
composition step currently executed), the graphplan – that contains more than
one composition solution – could be used to make service replacement easier.
A second perspective concerns service model expressiveness. Protocols could be
defined over capabilities, as in [15, 18], to enable the composition of more com-
plex services. Finally, a longer term perspective concerns another extension of
our service model, using security features in order to support the automatic
composition, correct by construction, of complex user tasks.
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Fig. 14. A composition for user task (eBookRetrieve, {title, customerId, creditCard},
{PRC}) (YAWL)


