
Outline
Introduction

Integration
Coordination
Conclusions

Extension of Behaviours with Formal Data
Types: Integration and Coordination

Pascal Poizat

Laboratoire de Méthodes Informatiques (LaMI)
UMR 8042 CNRS - University of Évry, GENOPOLE

Invited Lecture, Universities of Málaga and Extremadura

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

1 Introduction

2 Integration

3 Coordination

4 Conclusions

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

1 Introduction

2 Integration

3 Coordination

4 Conclusions

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

1 Introduction

2 Integration

3 Coordination

4 Conclusions

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

1 Introduction

2 Integration

3 Coordination

4 Conclusions

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

The problem : complex systems

• expressive structuring needed
(modules objects components aspects)

• encapsulated datatypes

• behaviours, communication, value-passing

• verification

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

The problem : complex systems

• expressive structuring needed
(modules objects components aspects)

• encapsulated datatypes

• behaviours, communication, value-passing

• verification

(Possible) pieces of a solution

• trusted components, ADL: interface, ports, ... concepts

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

The problem : complex systems

• expressive structuring needed
(modules objects components aspects)

• encapsulated datatypes

• behaviours, communication, value-passing

• verification

(Possible) pieces of a solution

• trusted components, ADL: interface, ports, ... concepts

• mixed specifications: behaviours + datatypes

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

The problem : complex systems

• expressive structuring needed
(modules objects components aspects)

• encapsulated datatypes

• behaviours, communication, value-passing

• verification

(Possible) pieces of a solution

• trusted components, ADL: interface, ports, ... concepts

• mixed specifications: behaviours + datatypes

• formality

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

The problem : complex systems

• expressive structuring needed
(modules objects components aspects)

• encapsulated datatypes

• behaviours, communication, value-passing

• verification

Our framework
• formal components with BIDL

• expressive gluing mechanisms

• mixity: behaviours + abstract datatypes = STS

• analysis techniques for STS

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

LTS in everyday life

Labelled Transition Systems

Usual models for behaviours are LTS < S, s0, A, T >
with s0 ∈ S and T ⊆ S × A× S, often, A = Ain] Aout (IOLTS)

Example (Coffee Machine)

coffee coffee

giveCoffee giveTea

tea

giveCoffee

1 euro
2 euros

1 euro

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

LTS in everyday life

Labelled Transition Systems

Usual models for behaviours are LTS < S, s0, A, T >
with s0 ∈ S and T ⊆ S × A× S, often, A = Ain] Aout (IOLTS)

Example (Coffee Machine)

coffee coffee

giveCoffee giveTea

tea

giveCoffee

1 euro
2 euros

1 euro

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

State explosion

In presence of data ...

The computation of an LTS from a specification may explode !

Example (Buffer)

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

State explosion

In presence of data ...

The computation of an LTS from a specification may explode !

Example (Buffer)

Buffer<> = in ?a:Nat . Buffer<a>
Buffer<b.X> = in ?a:Nat . Buffer<b.X.a>

+ out !b . Buffer<X>

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

State explosion

In presence of data ...

The computation of an LTS from a specification may explode !

Example (Buffer)

...

... ho
ri

zo
nt

al
 e

xp
lo

si
on

 (e
nc

ap
su

la
tio

n)
vertical explosion (receptions)

in 1

in 2

in 3

in 0

in 4

<2.2><>

<0>

<1>

<2>

<3>

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

The STS Solution

Symbolic Transition Systems

STS abstract the data on states and transitions
[HL-HandbookPA,STS4LOTOS], [CPR00]

e.g., < D, (Σ, Ax), S, s0, v0, T > [MPR04]

with elements of T of the form:

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

The STS Solution

Symbolic Transition Systems

STS abstract the data on states and transitions
[HL-HandbookPA,STS4LOTOS], [CPR00]

e.g., < D, (Σ, Ax), S, s0, v0, T > [MPR04]

with elements of T of the form:

s
[guard(self,x1,...,xn)] event?x1...?xn !t1...!tm /action(self,x1,...,xn)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

The STS Solution

Symbolic Transition Systems

STS abstract the data on states and transitions
[HL-HandbookPA,STS4LOTOS], [CPR00]

e.g., < D, (Σ, Ax), S, s0, v0, T > [MPR04]

with elements of T of the form:

s
[guard(self,x1,...,xn)] event?x1...?xn !t1...!tm /action(self,x1,...,xn)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

The STS Solution

Symbolic Transition Systems

STS abstract the data on states and transitions
[HL-HandbookPA,STS4LOTOS], [CPR00]

e.g., < D, (Σ, Ax), S, s0, v0, T > [MPR04]

with elements of T of the form:

s
[guard(self,x1,...,xn)] event?x1...?xn !t1...!tm /action(self,x1,...,xn)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

The STS Solution

Symbolic Transition Systems

STS abstract the data on states and transitions
[HL-HandbookPA,STS4LOTOS], [CPR00]

e.g., < D, (Σ, Ax), S, s0, v0, T > [MPR04]

with elements of T of the form:

s
[guard(self,x1,...,xn)] event?x1...?xn !t1...!tm /action(self,x1,...,xn)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

The STS Solution

Symbolic Transition Systems

STS abstract the data on states and transitions
[HL-HandbookPA,STS4LOTOS], [CPR00]

e.g., < D, (Σ, Ax), S, s0, v0, T > [MPR04]

with elements of T of the form:

s
[guard(x1,...,xn)] event?x1...?xn !t1...!tm /action(x1,...,xn)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s′

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

The STS Solution

Symbolic Transition Systems

STS abstract the data on states and transitions
[HL-HandbookPA,STS4LOTOS], [CPR00]

e.g., < D, (Σ, Ax), S, s0, v0, T > [MPR04]

with elements of T of the form:

s
[guard(x1,...,xn)] event?x1...?xn !t1...!tm−−−−−−−−−−−−−−−−−−−−−−→ s′

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

Question

Are BIDL needed anyway ?

Yes

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

Question

Are BIDL needed anyway ?

Yes
what does this component ?

FOOBAR

read

result

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

Question

Are BIDL needed anyway ?

Yes
it reads (something) and then outputs a result

read result

FOOBAR

read

result

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

Question

Are data needed anyway ?

Yes

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

Question

Are data needed anyway ?

Yes
what does this component ?

read result

FOOBAR

read

result

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

Question

Are data needed anyway ?

Yes
it reads (at a time) two integers and then outputs the result of
the div operation applied to the integers

read ?a:Nat ?b:Nat

FOOBAR

read

resultresult !div(a,b)

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

Question

Are data needed anyway ?

Yes
hidden underlying static type (with usual static signatures)

FOOBAR

read

resultresult !div(a,b)read ?a:Nat ?b:Nat

self

div(FOOBAR,Nat,Nat):Nat

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Context
LTS vs STS
Formality

What does formality bring in ?

Some information in [PRS04]:

• abstract, expressive descriptions for BIDL

• animation

• equivalence checking, deadlock freedom, adaptors

Comp1 Comp2

compatibility

Comp3

adapter

deadlock ?

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Lots of mixed specification languages

kind dynamic static examples

Heterogeneous P. Alg. model ObjectZ-CSP, CSP-OZ, ZCCS,
ZCSP, TCOZ

P. Alg. alg. LOTOS, PSF
T/S model µSZ, MaC, Event Calculus
T/S alg. Korrigan, SDL, CASLChart, TAG
T/S – spec. – Estelle, UML, Argos, BDL
Petri alg. OBJSA, Clown, CO-OPN/2
Petri – spec. – CO, OPN

Homogeneous Algebraic LTL, Rewriting Logic, ASM
Logical TLA, Unity, TRIO, OSL
Proc. Alg. CCS+value, CSP, π-calcul

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Formal + Semi-Formal

semi-formal

+ graph. notations, readability, expressiveness, structuring
• UML (formal ?)

- tools, consistency ?
• ArgoUML, SMW, UMLAut, ...

formal

+ abstraction
• what not how

+ semantics
• tools, verification

- not easy to learn and use

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Formal + Semi-Formal

semi-formal

+ graph. notations, readability, expressiveness, structuring
• UML (formal ?)

- tools, consistency ?
• ArgoUML, SMW, UMLAut, ...

formal

+ abstraction
• what not how

+ semantics
• tools, verification

- not easy to learn and use

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Syntactic Extensions

...

IMPORT

IMPORT

IMPORT

Z−spec Module2
B−spec Module3

x : Module1.Type1

Larch−spec Module1

y : Type2

Source State

ACTIVITY

EVENT [GUARD] / ACTION Target State

ACTIVITY

transition part interaction kind example
EVENT reception evt-name(x1:T1,. . . ,xn:Tn)
GUARD guard predicate
ACTION emission receiver ˆ evt-name(t1,. . . ,tn)
ACTION assignment x:=t

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Typical Use: Case Study

The Gas Station
• furnishes different gas

• three pumps, three tanks

• credit card payment

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Typical Use: Analysis

Static part

• booleans (Z)

• integers, real numbers (Larch)

• gases, pumps, tanks (Z)

Dynamic part

• card manager

• pump manager 3 Extended State Diagrams

• tank manager

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Typical Use: Analysis

Static part

• booleans (Z)

• integers, real numbers (Larch)

• gases, pumps, tanks (Z)

Dynamic part

• card manager

• pump manager 3 Extended State Diagrams

• tank manager

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Typical Use: Analysis

Static part

• booleans (Z)

• integers, real numbers (Larch)

• gases, pumps, tanks (Z)

Dynamic part

• card manager

• pump manager 3 Extended State Diagrams

• tank manager

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

augmentQty(pp: NatZ, nqt: IntZ)

IMPORT Z−spec Z−donneeSE
etatp: BoolZ

/pumpState(etatp)

/GCuves:= UpdateQty[pp/pp?; nqt/qtte?]

Tank Manager

/GCuves:= UpdateQty[pp/pp?; nqt/qtte?]

reduceQty(pp: NatZ, nqt:IntZ)

/GCuves:= InitTankMgr
/GCuves:= OkThreshold[etatp/res!;pa/pp?;sp/seuil?]

testThreshold(pa: NatZ, sp:IntZ)

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

s1

s2

succ(succ(0))
/n:=n+

s2

s1

D2^tick(n+succ(0))
/D1^tick(n+succ(0)),

back

tick(x:Nat)

IMPORT LarchSpec NAT
n:Nat

D3

s1

s2

back

tick(x:Nat)

IMPORT LarchSpec NAT IMPORT LarchSpec NAT

D1 D2

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Operational Semantics – ||.||SOS

On operational semantics ...

• can be used for Transition Systems and Process Algebras

• well suited for animation and equivalence checking
are the interfaces of C(lient) and S(erver) compatible ?

• refinement
does the C implementation do what is required in its interface ?

• compositionality
if I prove that C and C’ are compatible, may I replace C with C’ in any

system ?

• adequacy wrt temporal logic
if C and C’ are equal, may I prove properties on the simplest one ?

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Operational Semantics – ||.||SOS

On operational semantics ...

• can be used for Transition Systems and Process Algebras

• are the interfaces of C(lient) and S(erver) compatible ?

Interf(C) = Interf(S), with =∈ {=T ,∼,≈, ...}
• does the C implementation do what is required in its interface ?

Interf(C) ⊆ Interf(Impl(C)), with ⊆∈ {vT ,vF , ...}
• if I prove that C and C’ are compatible, may I replace C with C’ in any

system ?

C ∼ C′ ⇒ (∀S[.].S[C] ∼ S[C′])

• if C and C’ are equal, may I prove properties on the simplest one ?

C ∼ C′ ⇔ (∀φ ∈ ΦHML.C |= φ ⇔ C′ |= φ)

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

The [APS03] Semantics

• based on experience with several mixed languages
(Korrigan, CCS+ADT, TAG, MaC, ...)

• representative for the definition of a generic approach
to integrate static formal specifications (SFS)
into dynamic formal specification (DFS)
• builds on a first proposal for

UML state diagrams + SFS + synchronous communication
• generalizing and asynchronous communication

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Principle

Formal rules in 4 layers

• meta-typing

• static evolution

• dynamic evolution and open-systems

• composition

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Principle

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Remarks

• lots of dynamic semantics

• use of generic elements, e.g., event ∈ Qin

Constraints

• ||D||SOS = LTS (INIT , STATE , TRANS) ⇒OK !

Notation

• D, D = (INIT , STATE , TRANS, DeclImp, DeclVar) ∈ D

• EVENT = EVENT ? ∪ EVENT !, DeclVar = DeclVar ? ∪ DeclVar !

• S ⊆ STATE ×E× Q [EVENT ?]× Q [EVENT !]

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Remarks

• lots of dynamic semantics

• use of generic elements, e.g., event ∈ Qin

Constraints

• ||D||SOS = LTS (INIT , STATE , TRANS) ⇒OK !

Notation

• D, D = (INIT , STATE , TRANS, DeclImp, DeclVar) ∈ D

• EVENT = EVENT ? ∪ EVENT !, DeclVar = DeclVar ? ∪ DeclVar !

• S ⊆ STATE ×E× Q [EVENT ?]× Q [EVENT !]

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Remarks

• lots of dynamic semantics

• use of generic elements, e.g., event ∈ Qin

Constraints

• ||D||SOS = LTS (INIT , STATE , TRANS) ⇒OK !

Notation

• D, D = (INIT , STATE , TRANS, DeclImp, DeclVar) ∈ D

• EVENT = EVENT ? ∪ EVENT !, DeclVar = DeclVar ? ∪ DeclVar !

• S ⊆ STATE ×E× Q [EVENT ?]× Q [EVENT !]

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Static Evolution

∀i ∈ 1..n . ∃Xi . ti ::D Xi

∃vi . E ` ti BXi vi

act−eval(recˆe(t1, . . . , tn), < Γ, E , Qin, Qout >, D) =
< Γ, E , Qin, Qout] {recˆe(v1, . . . , vn)} >

∃X . t ::D X
∃v . E ` t BX v

act−eval(x := t , < Γ, E , Qin, Qout >, D) =< Γ, E{x 7→ v}, Qin, Qout >

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Static Evolution

Term evaluation, BX

• BAlg : rewriting (+ tools : Larch Prover, ELAN)

• BZ ,BB: LTS construction (+ tools : Z-Eves)

• B
CLASS

: classes formelles, Z

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Dynamic Evolution

Notation

EVENT ?+ = EVENT ? ∪ {ε}
||D||SOS = LTS(INIT , STATE , TRANS) with:

• STATE ⊆ S

• INIT ⊆ STATE

• TRANS ⊆ STATE × EVENT ?+ × STATE

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Dynamic Evolution

Event [Guard] / Actions

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Dynamic Evolution

Event [Guard] / Actions

Event?

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Open Systems

Notation

||D||open
SOS = LTS(INIT open, STATEopen, TRANSopen) with:

• INIT open ⊆ INIT

• TRANSopen ⊆ TRANS× Q [EVENT ?]× Q [EVENT !]

• STATEopen ⊆ SOURCE(TRANSopen) ∪ TARGET (TRANSopen)

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Open Systems

Event [Guard] / Actions

Event?

Event?*, Event!*

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Compositions

Notation

|| ∪i∈1..n Di ||open
oper =

LTS(INIT
open

(∪i∈1..nDi), STATE
open

(∪i∈1..nDi), TRANS
open

(∪i∈1..nDi))
with:

• INIT (∪i∈1..nDi) ⊆ Πi INIT open(Di)

• TRANS(∪i∈1..nDi) ⊆ {t ∈ ΠiTRANSopen(Di)|CC(t)}

• STATE(∪i∈1..nDi) ⊆
INIT (∪i∈1..nDi) ∪ TARGET (TRANS(∪i∈1..nDi))

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Compositions

Idea

whenever

something addressed to Dj

is taken out of a given Dk output queue

then

it is put, at the same time, within the Dj input queue

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

Compositions

Formally ...

CC(S1
l1−→Ein1

,Eout1
S′

1, . . . , Sn
ln−→Einn ,Eoutn

S′
n) ⇔

∀k ∈ 1 . . . n . ∀Dj ˆe ∈ Eoutk . Dj ∈ ∪i∈1..nDi =⇒ e ∈ Einj

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

xCLAP - Architecture

Class AS

Class AST

Class A0

Class AT

Class ESD

:ESD

smw2xclap

Translator

Spark

SMW

State
Parsing

(textual format)

Animation

diagrams

Class hierarchy

Data tools

Automaton instances

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

xCLAP - Designing

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

xCLAP - Translation

D1

/n:=n+x

esdstate

EsdState s1 {’initial’:1, ’final’:0}.
EsdState s2 {’initial’:0, ’final’:0}.

declare D1

−−
END_STATES

esdtrans

−−
END_TRANS

n: Nat
import LarchSpec Nat: nat.lp

Translator

smw2xclap

n: Nat

tick(x:Nat)

[x>succ(0)]

EsdTrans s1 − > s2 {’event’:"tick(x:nat)", ’guard’:"x>succ(0)", ’action’:""}.
EsdTrans s2 − > s1 {’event’:"", ’guard’:"", ’action’:"n:=n+x"}.IMPORT LarchSpec Nat: nat.lp

s1

s2

(a) state diagram (graphical format) (b) state diagram (textual format)

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

xCLAP - Configuration

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Motivations
Overview
Semantics
Tool

xCLAP - Animation

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

What do we model ?

Distributed Entities
• viewed through interfaces (black-box foundation)

• interfaces have to take into account behavioural
information (BIDL)

• goal: quick survey and comparison of formal material to
describe coordination/interaction among entities

• remember ?
formal means enable one to use existing verification tools
to ensure correctness of interactions

• applications: web services, genetic regulatory networks

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

How ?

A Simple Formal Model: LTS

• here: simple yet general formal model of entities:
a nondeterministic LTS < L, S, I, F , T >

• labels may be emissions e! or receptions r?

• data information is discarded for simplicity

• running example: one store and several suppliers

buy!

Store Supplier

nok?

ok?
refuse! accept!

request?

[YellinEtAl-TOPLAS’97]
[deAlfaroHenzinger-ESEC’01]

[ArbabEtAl-FOCLASA’02]

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Communication Model
• depends on the means used to compose entities

• implicit means: semantic rules (first part)

• explicit means

temporal logic

interaction diagrams

process algebra
synchronized products

LTS

Entity

Entity

Entity

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Semantics
• basic idea: redefine the CC constraint of part I

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Semantics
• basic idea: redefine the CC constraint of part I

CC(S1
l1−→Ein1

,Eout1
S′

1, . . . , Sn
ln−→Einn ,Eoutn

S′
n) ⇔

∀k ∈ 1 . . . n . ∀Dj ˆe ∈ Eoutk . Dj ∈ ∪i∈1..nDi =⇒ e ∈ Einj

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Semantics
• basic idea: redefine the CC constraint of part I

CC(S1
l1−→Ein1

,Eout1
S′

1, . . . , Sn
ln−→Einn ,Eoutn

S′
n, Coord) ⇔

???

• see [SP04], [JUCS, 2005, submitted]

• here: examples

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Process Algebra

• parallel composition operators are way to match inputs and
outputs

• may be used as an explicit 1st class coordinator language
to take into account more complex coordination protocols

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Process Algebra

• parallel composition operators are way to match inputs and
outputs

• may be used as an explicit 1st class coordinator language
to take into account more complex coordination protocols

Store

Coord

buy oknok

Supplier

acc1 ref2req1 ref1 acc2 req2

reception

Supplier

emission

Example (with processes)
S = Supplier[req1/request, ref1/refuse, ..]

| Supplier[req2/request, ref2/refuse, ..]
| Store
| Coord

Coord = buy.(’req1.Wait1 + ’req2.Wait2)
Wait1 = acc1.’ok .0 + ref1.’nok.Coord
Wait2 = acc2.’ok.0 + ref2.’nok.Coord

[SalaünEtAl-IJBPIM]

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Process Algebra

• parallel composition operators are way to match inputs and
outputs

• may be used as an explicit 1st class coordinator language
to take into account more complex coordination protocols

Store

Coord

buy oknok

Supplier

acc1 ref2req1 ref1 acc2 req2

reception

Supplier

emission

Example (with processes)
S = Supplier[req1/request, ref1/refuse, ..]

| Supplier[req2/request, ref2/refuse, ..]
| Store
| Coord

Coord = buy.(’req1.Wait1 + ’req2.Wait2)
Wait1 = acc1.’ok .0 + ref1.’nok.Coord
Wait2 = acc2.’ok.0 + ref2.’nok.Coord

[SalaünEtAl-IJBPIM]

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Synchronized Products

• simple and readable means to define interactions among
entities [Arnold94,ArnoldEtAl-FI04]

• extended synchronization vectors [SP04]

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Synchronized Products

• simple and readable means to define interactions among
entities [Arnold94,ArnoldEtAl-FI04]

• extended synchronization vectors [SP04]

synchronous, one to many: <a!,ε,b?,ε,c?>

synchronous, matching: <a!,ε,b!,ε,c!>

synchronous, generation: <a?,ε,b?,ε,c?>

asynchronous, one to many: [a!,ε,b?,ε,c?]

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Synchronized Products

• simple and readable means to define interactions among
entities [Arnold94,ArnoldEtAl-FI04]

• extended synchronization vectors [SP04]

buy!

Store Supplier

nok?

ok?
refuse! accept!

request?

Example (with vectors)

< buy !, request ?, request ? >
< nok ?, ε, refuse ! >
< nok ?, refuse !, ε >
< ok ?, ε, accept ! >
< ok ?, accept !, ε >

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Interaction Diagrams

• coordination may be described using interaction diagrams:
MSC, or UML sequence and collaboration diagrams

• many formalisations proposed so far
[ITU-MSC’96,MauwReniers-MSC’96,KrügerEtAl-SFEDL’02]

request

:Store :Supplier :Supplier

accept

refuse

refuse

acceptALT

ALT

PAR

msc runex

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Interaction Diagrams

• coordination may be described using interaction diagrams:
MSC, or UML sequence and collaboration diagrams

• many formalisations proposed so far
[ITU-MSC’96,MauwReniers-MSC’96,KrügerEtAl-SFEDL’02]

request

:Store :Supplier :Supplier

accept

refuse

refuse

acceptALT

ALT

PAR

msc runex

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Temporal Logic

• numerous: LTL,CTL/CTL∗,ACTL,TLA, µ-calculus,...
• expressive means to coordinate entities, e.g. in formal

ADLs [JUCS, 2005, submitted]
• first, being able to describe the properties of objects that

are to be glued (states and transitions)
• indexed formulas, then lift the properties of the

subcomponents of a composition up to the composition
• the logic also takes into account coordination using logical

conjunction

Example (with logic)

Store .buy ! ⇔ ALL ({i : [1..N]Supplier i}).request ?
∨ Store .ok? ⇔ ONE({i : [1..N]Supplier i}).accept !
∨ Store .nok ? ⇔ ONE({i : [1..N]Supplier i}).refuse !

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

Temporal Logic

• numerous: LTL,CTL/CTL∗,ACTL,TLA, µ-calculus,...
• expressive means to coordinate entities, e.g. in formal

ADLs [JUCS, 2005, submitted]
• first, being able to describe the properties of objects that

are to be glued (states and transitions)
• indexed formulas, then lift the properties of the

subcomponents of a composition up to the composition
• the logic also takes into account coordination using logical

conjunction

Example (with logic)

Store .buy ! ⇔ ALL ({i : [1..N]Supplier i}).request ?
∨ Store .ok? ⇔ ONE({i : [1..N]Supplier i}).accept !
∨ Store .nok ? ⇔ ONE({i : [1..N]Supplier i}).refuse !

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Formal Model
Coordination Means
Comparison

A First Comparison

Process Algebras Vectors Logics

Name matching

Data

1 to N

1 to 1

E
xp

re
ss

iv
en

es
s

C
om

m
un

ic
at

io
n

U
se

r
Fr

ie
nd

lin
es

s Tools

Graphical
notations

+ ++ ++ ++

++ −

+− −− + −

Executability

animation

no

no

yes

yes

no no yes no

noyes

animation
model−checking

extension

yes

extension

yes yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

animation

model−checking

++ ++ −

no

Interaction Diagrams

yes yes

no yes

Order

yes

1 to M in N

no no

equivalence checking equivalence checking
model−checking

embeddings

+

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Conclusions

Overview
• semantics for STS: operational (here), denotational

• partially tool-equipped: animating (xCLAP), PVS
embedding

• semantics for different coordination means

Perspectives

• framework for STS (Eclipse)

• implement coordination means

• better verification means

• relations wrt code / code generation

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Conclusions

Overview
• semantics for STS: operational (here), denotational

• partially tool-equipped: animating (xCLAP), PVS
embedding

• semantics for different coordination means

Perspectives

• framework for STS (Eclipse)

• implement coordination means

• better verification means

• relations wrt code / code generation

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Any questions ?

Pascal.Poizat@lami.univ-evry.fr
http://www.lami.univ-evry.fr/˜poizat

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Christian Attiogbé, Pascal Poizat, and Gwen Salaün.
Integration of Formal Datatypes within State Diagrams.
In Fundamental Approaches to Software Engineering
(FASE’2003), volume 2621 of Lecture Notes in Computer
Science, pages 344–355. Springer-Verlag, 2003.

Christine Choppy, Pascal Poizat, and Jean-Claude Royer.
A Global Semantics for Views.
In International Conference on Algebraic Methodology And
Software Technology (AMAST’2000), volume 1816 of
Lecture Notes in Computer Science, pages 165–180.
Springer-Verlag, 2000.

Olivier Maréchal, Pascal Poizat, and Jean-Claude Royer.
Checking Asynchronously Communicating Components
using Symbolic Transition Ssystems.

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

In Distributed Objects and Applications (DOA’2004),
volume 3291 of Lecture Notes in Computer Science, pages
1502–1519. Springer-Verlag, 2004.

Pascal Poizat, Jean-Claude Royer, and Gwen Salaün.
Formal methods for component description, coordination
and adaptation (organizer position paper).
In Carlos Canal, Juan Manuel Murillo, and Pascal Poizat,
editors, Workshop on Coordination and Adaptation
Techniques for Software Entities (WCAT’04), pages
89–100, 2004.
Held in conjunction with the 18th European Conference on
Object-Oriented Programming (ECOOP). Published as a
Technical Report of the Universities of Málaga (Spain),
Extremadura (Spain) and Évry (France). ISBN
84-688-6782-9. Available at http://wcat04.unex.es/.

Poizat Extension of Behaviours with Formal Data Types

Outline
Introduction

Integration
Coordination
Conclusions

Gwen Salaün and Pascal Poizat.
Interacting Extended State Diagrams.
In Semantic Foundations of Engineering Design
Languages (SFEDL’2004), volume 115 of Electronic Notes
in Theoretical Computer Science, pages 49–57, 2004.

Poizat Extension of Behaviours with Formal Data Types

	Outline
	Introduction
	Context
	LTS vs STS
	Formality

	Integration
	Motivations
	Overview
	Semantics
	Tool

	Coordination
	Formal Model
	Coordination Means
	Comparison

	Conclusions

